Math-3A

Lesson 2-3
 Factoring Quadratics with Lead
 Coefficient Not = 1,
 Complex Conjugates

Factor the quadratic expressions.

$$
3 x^{3}+15 x^{2}-42 x \quad 5 x^{3}-25 x^{2}-20 x
$$

What if there is no common factor AND the lead coefficient is NOT equal to 1 ?

$$
a x^{2}+b x+c
$$

(These come from multiplying binomials that also do not have lead coefficients of 1.)

$$
(2 x+1)(x+3)
$$

Use the "box method" to multiply the binomials

$$
2 x^{2}+7 x+3
$$

	x	3
$2 x$	$2 x^{2}$	$6 x$
1	x	3

Notice a nice pattern when you multiply this out ("simplify")
$(2 x+1)(x+3)$
$2 x^{2}+7 x+3$
"right plus right" does not add up to 7 , but notice something.

$2 * 15=30$
These are all of the terms in "the box"

What is the bottom-left term in the box?

$$
x^{*}(3)=3 x
$$

What is the top-right term in the box?

$$
2 x^{*}(5)=10 x
$$

Final check: $3 * 5=15$?
Factored form:

$$
\begin{array}{r}
2 x^{2}+13 x+15 \\
\rightarrow \\
(2 x+3)(x+5)
\end{array}
$$

$4 * 10=40$
These are all of the terms in "the box"

	$4 x$	5
x	$4 x^{2}$	$5 x$
2	$8 x$	10

$40=8 * 5 \quad$ Since $4 x^{2}$ can be factored 2 ways, look for the common factors of the $1^{\text {st }}$ row.

This tells us to break $13 x$ into $8 x+5 x$
$4 x^{2}+13 x+10$
$4 x^{2}+8 x+5 x+10$
Factored form:
$4 x^{2}+13 x+10$
$\rightarrow(x+2)(4 x+5)$
' x ' is the common factor of $4 x^{3}$ and $5 x$

Look for the common factors of the $1^{\text {st }}$ column
' $4 x$ ' is the common factor of $4 x^{3}$ and $8 x$

$$
\begin{gathered}
4 x^{*}(\underline{2})=8 x \\
x^{*}(\underline{5})=5 x
\end{gathered}
$$

Final check: $2 * 5=10$?

$$
24=2 * 12
$$

This tells us to break 14 x into $\underline{2 \mathrm{x}+12 \mathrm{x}}$ $3 x^{2}+14 x+8$
$3 x^{2}+2 x+12 x+8$

What is the bottom-left term in the box?

$$
x^{*}(2)=2 x
$$

What is the top-right term in the box?

$$
3 x^{*}(4)=12 x
$$

Final check: $2 * 4=8$?
Factored form:

$$
\begin{gathered}
3 x^{2}+14 x+8 \\
\rightarrow(3 x+2)(x+4)
\end{gathered}
$$

Factor

Factor

Factor

Factor

