Math-3A

Lesson 1-2

The Linear Function

1. For the input values given in the table, use the equation below to find their corresponding output values.

$$
y=-2 x+3
$$

x	0	1	2
y			

4. Which of the following is/are not functions? Explain why not.
a.

b.

x	6	6	-2
y	4	7	3

c.

d. $(2,5),(3,5),(-4,5)$

Delta a Greek letter (that looks like a triangle) used in engineering and math to denote "change."
Δx Means the change in ' x '
Δy Means the change in ' y '

1) Fill in the output values defined by the equation
2) Find Δx and Δy for adjacent values in each table
3) Fill in the output values defined by the equation
4) Find Δx and Δy for adjacent values in each table

$$
\begin{array}{lll}
\Delta y=4 & \Delta y=4 & \text { This number in the equation } \\
\text { is called the SLOPE }
\end{array}
$$

Slope

Slope can be interpreted to mean "steepness" in the real world.

$$
6 \%=0.06=\frac{0}{100}
$$

6 ' of rise/fall for every 100^{\prime} of horizontal distance

Why isn't the change in ' y ' between adjacent terms equal to the coefficient of ' x '?
Fill in the tables.

We changed the
$\frac{\text { input value to }}{}$
' x ' by ' 2 ' for each adjacent value in the table instead of ' 1 '.

How can you use the change in ' x ' and the change in ' y ' in the tables to calculate the coefficient of ' x '?

Fill in the table then graph the ordered pairs

Graphing the solution to the equation will result in infinitely points
\rightarrow they all form a line.

Slope (of a line) is its steepness given by $m=\frac{\Delta y}{\Delta x}$

Slope is the coefficient of ' x ' when the equation is written in the form: $y=m x+b$

$$
m=\frac{4}{2}=2
$$

Determining if the relation is linear.

Graph: is it linear?

The slope (steepness) needs to be constant.

Data table:

Is the data linear? The slope is constant \rightarrow the graph of the points will be linear.

change in	x	$f(x)$		
$\mathrm{x}=2$	-2	-7		
$\Delta x=2$	0	-5		
	2	-3		$\Delta y=2$ $\Delta y=2$
	4	-1		$\Delta y=2$
	6	1		
$\Delta x=2$	8	3		$\Delta y=2$
$=2$	10	5		$\Delta y=2$
=2	12	7		$\Delta y=2$
$=2$	14	9		$\Delta y=2$

Your turn: Which data set is linear?

A		B		C	
x	$f(x)$	\times	$\mathrm{g}(\mathrm{x})$	\times	$\mathrm{f}(\mathrm{x})$
0	0	-4	32	-4	-7
1	1	-3	18	-3	-5
2	1.4	-2	8	-2	-3
3	1.7	-1	2	-1	-1
4	2.0	0	0	0	1
5	2.2		2	1	3
6	2.4	2	8	2	5
7	2.6		18	3	7
8	2.8	4	32	4	9
9	3				

Slope-intercept form of a linear equation:

the equation of a line written in the form:
$y=f(x)$
that gives the
slope of the line
and
the y-value where the graph crosses the y-axis.

$$
\begin{aligned}
& y=m x+b \\
& y=3 x+2 \\
& \text { Slope }=3 \quad y \text {-intercept: }(0,2)
\end{aligned}
$$

Your turn: Is the data linear? If so, what is the equation that "fits" the data? $\quad y=m x+b$

What does this number represent on the graph?
$x \mathrm{f}(\mathrm{x})$ The output value 'ya when input value $\mathrm{x}=0$.
$\begin{array}{lll}-4 & -7 & y=m(0)+b \quad y=b\end{array}$
$\begin{array}{ll}-3 & -5 \\ \text { The } y \text {-intercept always has } a x x \text {-value of zero. }\end{array}$
-2 -3 $\quad(0, b) \quad b=1$
$\begin{array}{ll}-1 & -1 \\ \text { a } & \text { Substitute } \mathrm{b}=1 \\ \text { into the general equation. }\end{array}$

$$
y=m x+1
$$

What is the slope?

$$
m=\frac{\Delta y}{\Delta x} \quad m=\frac{2}{1}
$$

Substitute $\mathrm{m}=2$ into the general equation.

$$
y=2 x+1
$$

Another way to do it:

$$
y=m x+b \quad b=1 \quad y=m x+1
$$

$x \quad f(x)$
$\begin{array}{ll}-4 & -7\end{array}$
-3 $\begin{array}{ll}-5\end{array}$
Every $x-y$ pair is a solution of the equation \rightarrow makes the equation true.
-2 \quad-3 Substitute any x - y pair in for ' x ' and ' y ' in the equation.
$\begin{array}{ll}-1 & -1\end{array}$
$0 \quad 1$

$$
3=m(1)+1
$$

$\begin{array}{ll}1 & 3 \\ 2 & \text { Solve for ' } m \text { '. } \quad m=2\end{array}$
We know ' m ' and 'b' \rightarrow we know the equation that corresponds to the table.

$$
y=2 x+1
$$

What is the equation of the line?

What is the equation of the line?

Your turn: What is the equation that fits the data?

$$
\begin{aligned}
& y=m x+b \quad b=-3
\end{aligned}
$$

Your turn: What is the slope of the line that fits the data?

What is the equation of the line?

What is the equation of the line?

