Math-3A

Lesson 1-1
Relations and Functions

Relation: A "mapping" or pairing of input values to output values.

Function: A relation where
each input has exactly one output.

Describe how a relation is

1) Similar to a function.

Both have inputs matched to outputs.

1) Different from a function?

One input to a relation can be matched with two or more outputs but one input to a function can only be matched to one output.

Is it a function?

No: input value ' 2 ' has more than one output

Relation but NOT a function since input value '4' has 2 outputs.

Is it a function?

No: input value ' 2 ' has more than one output

No (There aren't any pairings of inputs to outputs.)

Yes Each input has exactly one output (even though it's the same output)

Is it a relation?

There are at least 6 ways to show a relation between input and output values.

Ordered Pairs: $\quad(2,4),(3,2),(-4,3)$

Data table: \quad| x | 2 | 3 | -4 |
| :---: | :---: | :---: | :---: |
| y | 4 | 2 | 3 |

Equation: $y=2 x+1 \quad$ Function notation: $f(2)=4$

Graph:

Are all of these representations the same?

Vocabulary

Domain: the set made up of all of the input values that have corresponding output values.

Range: the set made up of all of the corresponding output values.

Identify the Domain

> 1. (2, 4), (3, 5), (-4, 2)

$$
\text { 4. } 2,3,-4,-5
$$

What are 6 ways you can show a relation between input and output?

Ordered Pairs

Data table
Equation
Graph
Function notation: $f(2)=4$

Mapping

$y=f(x) \quad$ Function Notation

When we say " y is a function of x " we mean:

We are "doing math" (performing mathematical operations) on the input value ' x ' to determine the corresponding output value ' y '.

Which of the following equations is " ' y ' a function of x "?

$$
x=\frac{1}{2} y-3
$$

$$
y=2 x+6
$$

We are performing operations on the input value ' x ' to get the output value ' y '.

In the equation, " x " is just place holder for the values that we "plug in" (substitute) into the equation in place of " x ".

$$
y=2 x-1
$$

We replace ' x ' (the place-holder) with a parentheses. Then we substitute into the parentheses the input value then simplify.

$$
y=2(\quad)-1
$$

x	0	1	2
y	-1	1	3

$$
\begin{array}{ccc}
y=2(0)-1 & y=2(1)-1 & y=2(2)-1 \\
y=-1 & y=1 & y=3
\end{array}
$$

Equation \rightarrow table

Using the equation form of the function, fill in the missing values in the table to convert the equation into a table of values.

$$
y=3 x+4
$$

x	0	1	2
y	4	7	10

$y=4 x-2$

x	0	1	2
y	-2	2	6

$$
y=5 x+3
$$

What do you notice when comparing the constant term in the equation to the numbers in the table?

$$
y=3 x+4
$$

x	0	1	2
y	4	7	10

$$
y=3(0)+4
$$

$$
y=4 x-2
$$

$$
y=4(0)-2
$$

$$
y=5 x+3
$$

$$
y=5(0)+3
$$

The constant term of the equation is always mapped from the input value zero.

Fill in the table then graph $x-y$ pairs from the table.
$y=3 x+1$

y-intercept: the $x-y$ pair where a graph crosses the y-axis.

Solution of a two-variable equation: all $x-y$ pairs that make the equation true.
$y=4 x-3$

Does the table represent the
Does the graph represent the complete solution? no complete solution? no

Fill in the table then graph
x-y pairs from the table.
$f(x)=x^{2}+2$

x	0	1	2
y	2	3	6

y-intercept: always results from $f(0)$.
Solution of a two-variable equation:
all x - y pairs that make the
equation true.

$$
g(x)=-2 x^{2}+3 x+4
$$

x	0	1	2
y	4	5	2

Does the table represent the Does the graph represent the complete solution? no complete solution? no

Is it a function?

1. $(2,4),(3,5),(-4,5)$
2.

x	6	6	-2
y	4	7	3

1. Convert $(2,4),(3,5),(-4,5)$ into a table
2. Convert $f(3)=6, f(-2)=1, f(6)=-5$ into a table
3. What special point does $f(0)=7$ represent?
4. What special point does $f(3)=0$ represent?
