Math-3A

Lesson 1-1 Relations and Functions

<u>Relation</u>: A "<u>mapping</u>" or pairing of <u>input</u> values to <u>output</u> values.

Function: A relation where each <u>input</u> has <u>exactly</u> one <u>output</u>.

Describe how a relation is

1) Similar to a <u>function</u>.

Both have inputs matched to outputs.

 Different from a <u>function</u>? One input to a relation can be matched with two or more outputs but one input to a function can only be matched to one output.

No: input value '2' has more than one output

Relation but NOT a function since input value '4' has 2 outputs.

No: input value '2' has more than one output

No (There aren't any pairings of inputs to outputs.)

Yes Each input has exactly one output (even though it's the same output)

Is it a relation?

<u>There are at least</u> 6 ways to show a <u>relation</u> between <u>input</u> and <u>output</u> values.

<u>Ordered Pairs</u>: (2, 4), (3, 2), (-4, 3)

Data table:	Х	2	3	-4
	У	4	2	3

<u>Equation</u>: y = 2x + 1 <u>Function notation</u>: f(2) = 4

Graph:

Are all of these representations the same?

Vocabulary

Domain: the <u>set</u> made up of <u>all</u> of the <u>input</u> <u>values</u> that <u>have corresponding output values</u>.

Range: the set made up of all of the corresponding output values.

Identify the Domain

What are 6 ways you can show a <u>relation</u> between <u>input</u> and <u>output</u>?

Ordered Pairs

Data table

Equation

<u>Graph</u>

<u>Function notation</u>: f(2) = 4

Mapping

y = f(x) Function Notation

When we say "y is a function of x" we mean:

We are "<u>doing math</u>" (performing mathematical operations) on the input value 'x' to determine the corresponding output value 'y'.

Which of the following equations is "'y' a function of x"?

$$x = \frac{1}{2}y - 3 \qquad \qquad y = 2x + 6$$

We are performing operations on the input value 'x' to get the output value 'y'.

In the equation, "x" is just <u>place holder</u> for the values that we "plug in" (substitute) into the equation <u>in place of "x".</u>

$$y = 2x - 1$$

We <u>replace 'x'</u> (the place-holder) with a parentheses. Then we substitute into the parentheses the input value then simplify.

$$y = 2() - 1$$

$$x = 0$$

$$y = 1$$

$$y = 2(0) - 1$$

$$y = 2(1) - 1$$

$$y = 2(1) - 1$$

$$y = 2(2)$$

$$y = 1$$

$$y = 3$$

Equation \rightarrow table

Using the equation form of the function, fill in the missing values in the table to <u>convert the equation into a table of values.</u>

$$y = 3x + 4$$

$$x \quad 0 \quad 1 \quad 2$$

$$y \quad 4 \quad 7 \quad 10$$

$$y = 4x - 2$$

$$x \quad 0 \quad 1 \quad 2$$

$$y \quad -2 \quad 2 \quad 6$$

$$y = 5x + 3$$

X	0	1	2
У	3	8	13

What do you notice when comparing the constant term in the equation to the numbers in the table?

The constant term of the equation is <u>always mapped</u> from the input value <u>zero.</u>

Fill in the table then graph x-y pairs from the table.

<u>y-intercept</u>: the x-y pair where a graph crosses the y-axis.

Solution of a two-variable equation: all x-y pairs that make the equation true.

Does the table represent the <u>complete</u> solution? <u>no</u>

Does the graph represent the <u>complete</u> solution? <u>no</u>

Fill in the table then graph x-y pairs from the table.

$$f(x) = x^2 + 2$$

<u>y-intercept</u>: always results from f(0).

Solution of a two-variable equation: all x-y pairs that make the equation true.

$$g(x) = -2x^2 + 3x + 4$$

Does the table represent the <u>complete</u> solution? <u>no</u>

Does the graph represent the <u>complete</u> solution? <u>no</u>

Is it a function?

-2

3

- 1. Convert (2, 4), (3, 5), (-4, 5) into a table
- 2. Convert f(3) = 6, f(-2) = 1, f(6) = -5 into a table

3. What special point does f(0) = 7 represent?

4. What special point does f(3) = 0 represent?