Math-3A

Lesson 2-3
Factoring Quadratics with Lead
Coefficient Not = 1,
Complex Conjugates

Factor the quadratic expressions.

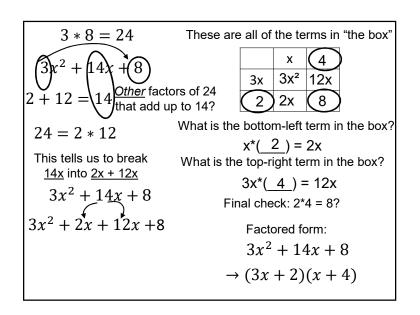
$$3x^3 + 15x^2 - 42x$$

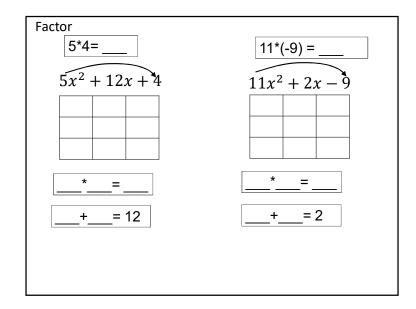
$$5x^3 - 25x^2 - 20x$$

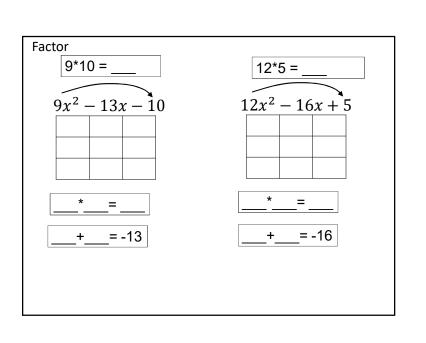
What if there is no common factor AND the lead coefficient is NOT equal to 1? $(a)x^2 + bx + c$

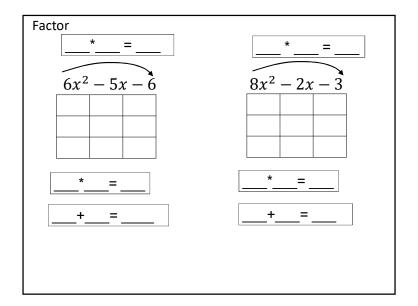
(These come from multiplying binomials that also do not have lead coefficients of 1.) (2x + 1)(x + 3)

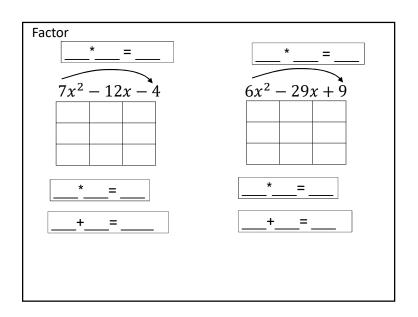
Use the "box method" to multiply the binomials


$$2x^2 + 7x + 3$$


	х	3
2x	2x²	6x
1	Х	3


Notice a nice pattern when you multiply this out ("simplify") (2x+1)(x+3) "right plus right" does not add up to 7, but notice something. 6x (2x+1)(x+3) 6x (2x+1)(x+3) 6x + x = 7x 2 * 3 = 6 Are there any other factors of 6 that add up to 7? 6 = 1 * 6


2*15=30	These are all of the terms in "the box"	
$2x^2 + 13x + 15$ 10 + 3 = 13	$\begin{array}{c cccc} x & 5 \\ 2x & 2x^2 & 10x \\ \hline 3 & 3x & 15 \\ \end{array}$	
30 = 10*3	What is the bottom-left term in the box?	
are there any <u>other</u> factors	$x^*(\underline{3}) = 3x$ What is the top-right term in the box?	
of 30 that add up to 13?	what is the top-right term in the box?	
This tells us to break 13x into 10x + 3x	2x*(<u>5</u>) = 10x	
	Final check: 3*5 = 15?	
$2x^2 + 13x + 15$	Factored form:	
$2x^2 + 10x + 3x + 15$	$2x^2 + 13x + 15$	
	$\rightarrow (2x+3)(x+5)$	


4*10 = 40These are all of the terms in "the box" 4x 5 $4x^2$ 5x Х Other factors of 40 8x (10) that add up to 13? Since $4x^2$ can be factored 2 ways, look |40 = 8*5for the common factors of the 1st row. This tells us to break 'x' is the common factor of $4x^3$ and 5x13x into 8x + 5x Look for the common factors of the 1st column $4x^2 + 13x + 10$ '4x' is the common factor of $4x^3$ and 8x $4x^*(2) = 8x$ $x^*(5) = 5x$ Factored form: $4x^2 + 13x + 10$ Final check: 2*5 = 10? \rightarrow (x + 2)(4x + 5)

