Multiplicity: the number of times a zero is repeated for a polynomial. $\quad y=(x-1)^{2}=(x-1)(x-1) \quad \mathrm{x}=1$ is a "zero" of the polynomial twice.

$$
\text { " } x=1 \text { is a zero of the polynomial with multiplicity } 2 \text { " }
$$

Fundamental Theorem of Algebra: If a polynomial has a degree of " n ", then the polynomial has " n " zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$
y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48 \quad \text { "4 th } \text { Degree" } \rightarrow 4 \text { zeroes }
$$

Linear Factorization Theorem: If a polynomial has a degree of " n ", then the polynomial can be factored into " n " linear factors.

$$
y=6(x+4)(x+3)(x-2 i)(x+2 i)
$$

Since each linear factor has one zero, these two theorems are almost saying the same thing.
Quadratic Formula: gives zeroes of $2^{\text {nd }}$ degree polynomials and proves two more theorems. $x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$

1. Complex Conjugates Theorem: If $f(x)$ is a function with real coefficients and if ($a+b i$) is a zero of $f(x)$, then its complex conjugate ($a-b i$) is also a zero of $f(x)$.

$$
\text { Example: } \quad y=x^{2}-4 x+5 \quad \text { Factorization: } \quad y=(x-2-3 i)(x-2+3 i) \quad \text { Zeroes: } \quad x=2-3 i
$$

$$
x=2+3 i
$$

2. Irrational Roots (Zeroes) Theorem: If an irrational number is the zero of a polynomial, then the conjugate of the irrational number is also a zero.

$$
\text { Example: } \quad y=x^{2}+4 x+1 \quad \text { Factorization: } \quad y=(x+2-\sqrt{3})(x+2+\sqrt{3}) \quad \text { Zeroes: } \quad x=2-\sqrt{3}, \quad x=2+\sqrt{3}
$$

$$
\text { Example: } \quad y=x^{2}+4 \quad \text { Factorization: } \quad y=(x+2 i)(x-2 i) \quad \text { Zeroes: } \quad 3-\sqrt{2}, \quad 3+\sqrt{2}
$$

