Math-3

Lesson 3-4

Add and Subtract Rational Expressions

What are "like terms" ?
Like variables:

$$
2 x+3 y+4 x
$$

Multiples of the same variable
Like powers:

$$
x^{2}+y^{2}+x^{3}-x^{2}
$$

same 'base' and same exponent.
Like radicals: $\sqrt{2}+\sqrt{3}+3 \sqrt{2}$
same 'radicand' and same index number.
Like fractions:

$$
\left(\frac{2}{3}, \frac{4}{3}, \frac{3}{4}\right.
$$

same denominator.

Adding Fractions
We can add "like fractions"

$$
\frac{2}{3}+\frac{1}{3}+\frac{4}{3}
$$

Combine the numerator over a common denominator.

$$
=\frac{2+1+4}{3}=\frac{7}{3}
$$

Identity Property of Multiplication

The numeral "one" multiplied by any number does not change the "identity" (value) of the number (the product will have an "equivalent" value).

$\underline{\text { Used for: }}$

Obtaining Common Denominators:

$$
\left.\frac{2}{3}+\frac{3}{5}=\frac{3}{5} *\left(\frac{3}{3}\right)+\frac{2}{3} * \frac{5}{5}\right)=\frac{10}{15}+\frac{9}{15}
$$

Rationalizing Denominators:

$$
\frac{2}{\sqrt{3}} *\left(\frac{\sqrt{3}}{\sqrt{3}}\right)=\frac{2 \sqrt{3}}{3}
$$

Least Common Multiple: The smallest number that two other numbers divide evenly.

Used for: Obtaining Least Common Denominators:

$$
\frac{1}{30}+\frac{1}{42}=\frac{1}{6 * 5}+\frac{1}{6 * 7}=\frac{1}{6 * 5} * \frac{7}{7}+\frac{1}{6 * 7} * \frac{5}{5}
$$

Both denominators have a common factor of 6 .
Left denominator has an uncommon factor of 5
Multiply $\frac{1}{42}$ by "one" in the form of $\frac{5}{5}$
right denominator has an uncommon factor of 7
Multiply $\frac{1}{30}$ by "one" in the form of $\frac{7}{7}$

Find the LCD

$$
\begin{array}{rlrl}
\frac{2}{15}+\frac{3}{20} & \frac{1}{60}+\frac{1}{48} \\
15 & =3 * 5 & 60=(2 * 6 * 5 \\
20 & =4 * 5 & 48=6 * 8=6 * 2 * 4 \\
L C D & =3 * 4 * 5 & L C D=2 * 6 * 4 * 5 \\
L C D & =60 & L C D=240
\end{array}
$$

A rational number
can be written as a ratio of integers.

A rational expression can be written as a ratio of expressions.

$\frac{2}{5}, \frac{3}{1}$

We will be looking at ratios of polynomial expressions.
Excluded Value: the value for ' x ' that results in division by zero

$$
\frac{x}{(x+1)}, \quad x \neq-1
$$

What type of rational expressions can you combine together using addition or subtraction?

"like rational expressions"

Which of these expressions are "like expressions"?
(1.) $\frac{x}{(x+1)}$

$$
\text { 2. } \frac{3 x}{(x-1)} \quad 3 \cdot \frac{4}{(x-5)}
$$

(4.) $\frac{2 x^{2}}{(x+1)}$

Which of these expressions are "like expressions"?

$$
\begin{array}{ll}
\text { 5. } \frac{x}{(x+1)(x-1)} & \text { 7. } \frac{2 x^{2}}{x^{2}-2 x+1} \\
\text { 6. } \frac{3 x}{(x-1)^{2}} & \text { 8. } \frac{4}{\left(x^{2}-1\right)}
\end{array}
$$

What is the excluded value for each expression?

$$
\begin{array}{lccc}
\text { 1. } \frac{x}{(x+1)} & 2 \cdot \frac{3 x}{(x-1)} & 3 \cdot \frac{4}{(x-5)} & \text { 4. } \frac{2 x^{2}}{(x+1)} \\
x \neq-1 & x \neq 1 & x \neq 5 & x \neq-1 \\
\text { 5. } \frac{x}{(x+1)(x-1)} & \text { 7. } \frac{2 x^{2}}{x^{2}-2 x+1} & \\
x \neq-1,+1 & x \neq 1 & \\
\text { 6. } \frac{3 x}{(x-1)^{2}} & \text { 8. } \frac{4}{\left(x^{2}-1\right)} & x \neq-1,+1 &
\end{array}
$$

Simplifying Fractions

$$
\frac{32}{44}=\frac{32 \div 4}{44 \div 4}=\frac{32 * 1 / 4}{44 * 1 / 4}=\frac{8}{11}
$$

What property are you applying?
Identity Property Of Multiplication
"multiplying by ' 1 ' in the form of $1 / 4$ over $1 / 4$ "
$\frac{\text { Unfortunately this method WILL NOT WORK }}{\text { for simplification of ratios of polynomials. }} \quad \frac{x^{2}-4}{x^{2}-3 x+2}$

Simplifying Fractions

You must FACTOR the fractions.

$$
\frac{32}{44}=\frac{4 * 8}{4 * 11}
$$

Break them apart into the product of fractions.

$$
=\frac{4}{4} * \frac{8}{11}
$$

Notice the fractions that equal ' 1 '

$$
=1 * \frac{8}{11}=\frac{8}{11}
$$

Reducing Rational Expressions to their Lowest form (simplification)

You must FACTOR the fractions.

$$
\frac{32}{44}=\frac{4 * 8}{4 * 11} \quad \frac{x^{2}-4}{x^{2}-3 x+2}=\frac{(x-2)(x+2)}{(x-2)(x-1)}
$$

Break them apart into the product of fractions.

$$
=\frac{4}{4} * \frac{8}{11} \quad=\frac{(x-2)}{(x-2)} * \frac{(x+2)}{(x-1)}
$$

Notice the fractions that equal ' 1 '

$$
=1 * \frac{8}{11}=\frac{8}{11} \quad=1 * \frac{(x+2)}{(x-1)}=\frac{(x+2)}{(x-1)}
$$

Adding/Subtraction Rational Expressions
The easy problem:

$$
\frac{2}{7}+\frac{3}{7}=\frac{2+3}{7}=\frac{5}{7}
$$

Combine the numerator over a common denominator.
The easy problem:

$$
\frac{4}{(x-5)}+\frac{3 x}{(x-5)}=\frac{4+3 x}{(x-5)}
$$

Combine the numerator over a common denominator.

Can you combine 4 and $3 x$?

Why not?

Your turn: add/subtract

$$
\begin{aligned}
& \frac{x+2}{2 x^{2}}+\frac{x-4}{2 x^{2}}=\frac{x+2+x-4}{2 x^{2}}=\frac{2 x-2}{2 x^{2}} \\
& =\frac{2(x-1)}{2^{*} x^{2}}=\frac{(x-1)}{x^{2}} \quad \text { What property are we using? } \\
& \text { Inverse Property of Multiplication. }
\end{aligned}
$$

Can you do it this way?
$\frac{x+2}{2 x^{2}}+\frac{x-4}{2 x^{2}}=\frac{x+2}{2 * x^{*} x}+\frac{x-(2 * 2)}{2^{*} x^{*} x}=\frac{1}{x}+\frac{-2}{x}$
Why not?
You CANNOT use the Inverse Property of Multiplication on addends.

Your turn: add/subtract

$$
\frac{x+2}{2 x^{2}}+\frac{x-4}{2 x^{2}}=\frac{x+2+x-4}{2 x^{2}}=\frac{2 x-2}{2 x^{2}}
$$

$$
2(x-1) \quad \text { will not allow you to simplify using the }
$$

$$
=\frac{2(x-1)}{2 * x^{2}}
$$ Inverse Property of Multiplication until you have factored it into two fractions.

$=\frac{2}{2} * \frac{(x-1)}{x^{2}}=\frac{(x-1)}{x^{2}}$
Only then will you be able to see how the Inverse Property of Multiplication changes the rational expression into multiplication by one.

Add/Subtract Rational Expression with Equal Denominators

 Which one is correct?$$
\begin{aligned}
\frac{2 x-7}{x^{2}+2}-\frac{x-4}{x^{2}+2} & \rightarrow \frac{2 x-7-x-4}{x^{2}+2} \\
& \rightarrow \frac{2 x-7-x+4}{x^{2}+2}
\end{aligned}
$$

Group expressions to avoid distributive property errors.

$$
\frac{(2 x-7)}{\left(x^{2}+2\right)}-\frac{(x-4)}{\left(x^{2}+2\right)} \rightarrow \frac{(2 x-7)-(x-4)}{x^{2}+2} \rightarrow \frac{2 x-7-x-(-4)}{x^{2}+2}
$$

$$
\rightarrow \frac{x-3}{x^{2}+2}
$$

Add/Subtract Rational Expressions whose Denominators are Additive Inverses of each other.

$$
\frac{1}{x-2}+\frac{3}{2-x}
$$

Rewrite the denominator in "standard form"

$$
\begin{aligned}
& \frac{1}{x-2}+\frac{3}{-x+2} \\
& \frac{1}{x-2}+\frac{3}{(-x+2)} * \frac{(-1)}{(-1)} \quad \text { Use the Identity Property of Multiplication } \\
& \text { (multiply by "one" in the form of }-1 /-1)
\end{aligned}
$$

No common denominator.

$$
\frac{(2 x-1)}{2 \underline{x}}+\frac{(x-2)}{3 \underline{x}}
$$

Multiply the left side fraction by one in the form of $3 / 3$ Multiply the right side fraction by one in the form of $2 / 2$

$$
\begin{aligned}
& \left(\frac{3}{3}\right) * \frac{(2 x-1)}{2 x}+\frac{(x-2)}{3 x} *\left(\frac{2}{2}\right)=\frac{3(2 x-1)}{2 * 3 * x}+\frac{2(x-2)}{2 * 3 * x} \\
= & \frac{3(2 x-1)+2(x-2)}{6 x}=\frac{6 x-3+2 x-4}{6 x}=\frac{8 x-7}{6 x}
\end{aligned}
$$

Can you factor this into two fractions multiplied together?

$$
\begin{aligned}
& \frac{x}{3}-\frac{x+1}{6} \quad \frac{2}{2} * \frac{x}{3}-\frac{(x+1)}{6}=\frac{2 x}{6}-\frac{(x+1)}{6} \\
& =\frac{2 x-(x+1)}{6}=\frac{2 x-x-1}{6}=\frac{x-1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x-1}{2 x}+\frac{2 x+3}{x}=\frac{(x-1)}{2 x}+\left(\frac{2}{2}\right) * \frac{(2 x+3)}{x} \\
& =\frac{(x-1)}{2 x}+\frac{2(2 x+3)}{2 x}=\frac{(x-1)}{2 x}+\frac{(4 x+6)}{2 x} \\
& =\frac{(x-1)+(4 x+6)}{2 x} \quad=\frac{5 x+5}{2 x}
\end{aligned}
$$

Can you factor this into two fractions multiplied together?

$$
\begin{aligned}
& \frac{3 x+1}{2 x}-\frac{1}{5}=\frac{5}{5} * \frac{(3 x+1)}{2 x}-\frac{1}{5} * \frac{2 x}{2 x} \\
& =\frac{5(3 x+1)}{10 x}-\frac{2 x}{10 x}=\frac{5(3 x+1)-2 x}{10 x} \\
& =\frac{15 x+5-2 x}{10 x}=\frac{13 x+5}{10 x}
\end{aligned}
$$

Can you factor this into two fractions multiplied together?

$$
\frac{12}{x^{2}+5 x-24}+\frac{3}{x-3}
$$

(step by step)

What is the factored version of the left denominator?

$$
\frac{12}{(x+8)(x-3)}+\frac{3}{(x-3)}
$$

What is the least common denominator?

$$
(x+8)(x-3)
$$

Multiply right-side term by "one in the form of $(x-8)$ over $(x-8)$ "

$$
=\frac{12}{(x+8)(x-3)}+\frac{3}{(x-3)} * \frac{(x+8)}{(x+8)}
$$

$$
\begin{aligned}
& \quad=\frac{12}{(x+8)(x-3)}+\frac{3}{(x-3)} * \frac{(x+8)}{(x+8)} \\
& =\frac{12+3(x+8)}{(x+8)(x-3)}=\frac{12+3 x+24}{(x+8)(x-3)}=\frac{3 x+36}{(x+8)(x-3)} \\
& =\frac{3(x+12)}{(x+8)(x-3)} \quad \begin{array}{l}
\text { Can you factor this into two } \\
\text { fractions multiplied together? }
\end{array}
\end{aligned}
$$

Complex Fraction is a fraction with a fraction in the

 numerator and a fraction in the denominator.$$
\frac{2 / 3}{4 / 5}=\frac{2}{3} \div \frac{4}{5}=\frac{2}{3} * \frac{5}{4}=\frac{2}{2} * \frac{5}{3 * 2}=\frac{5}{6}
$$

How do you divide fractions?
Multiply by reciprocal.

Simplify the complex fraction.

$$
\begin{aligned}
& \frac{\frac{5}{x+4}}{\frac{3}{x+4}}=\frac{5}{x+4} \div \frac{3}{x+4} \\
& =\frac{5}{(x+4)} * \frac{(x+4)}{3}=\frac{(x+4)}{(x+4)} * \frac{5}{3}
\end{aligned}
$$

Put binomials into parentheses!

$$
=\frac{5}{3}
$$

Simplify the complex fraction.

$$
\begin{aligned}
& \frac{\frac{x}{x+2}}{\frac{3}{x+3}}=\frac{x}{x+2} \div \frac{3}{x+3}=\frac{x}{x+2} * \frac{x+3}{3} \\
& \quad=\frac{x}{x+2} * \frac{x+3}{3}=\frac{x(x+3)}{3(x+2)}
\end{aligned}
$$

Combine the numerator fractions into one fraction.

2. Combine the denominator fractions into one fraction.

$$
x-18
$$

$$
\frac{3}{2 x+3}=\frac{x-18}{3} * \frac{x}{2 x+3}=\frac{x(x-18)}{3(2 x+3)}
$$

$$
x
$$

Simplify the complex fraction.

$$
\frac{\frac{1}{x}+\frac{2}{3 x}}{\frac{3}{x+4}}
$$

$$
\frac{4}{x-3}-\frac{2 x}{x^{2}-9}
$$

$$
\frac{2}{x-3}-\frac{3}{x+2}
$$

$$
\frac{1}{R_{T}}=\frac{R_{2} R_{3}}{R_{1} R_{2} R_{3}}+\frac{R_{1} R_{3}}{R_{1} R_{2} R_{3}}+\frac{R_{1} R_{2}}{R_{1} R_{2} R_{3}}
$$

$$
\frac{1}{R_{T}}=\frac{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}{R_{1} R_{2} R_{3}}
$$

$$
R_{T}=\frac{R_{1} R_{2} R_{3}}{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}
$$

Focal length of a telescope/microscope

