Math-3 Lesson 7-5

Solving Systems of Equations by Substitution and Elimination

Categories of Solutions:

Ways 2 lines can be graphed:

Cross \rightarrow one solution

Parallel \rightarrow no solutions

Same line \rightarrow infinitely many solutions

How do you know how many solutions there are? (1, 0, or infinite \#)

$y=3 x+1$
$y=2 x+1$
$y=-2 x+3$
$y=-2 x-4$
$2 x+2 y=2 \quad 1^{\text {st }}$ equation is a multiple of the $2^{\text {nd }}$ equation
$x+y=1$
Not same line, not parallel \rightarrow one solution. parallel \rightarrow no solutions \rightarrow same line
\rightarrow infinite \# of solutions.

Which Category?

$$
\begin{array}{|l|l|}
\hline y=2 x+6 \\
y=4 x-2
\end{array} \quad \begin{aligned}
& y=2 x+4 \\
& y=2 x-7
\end{aligned} \quad \begin{aligned}
& 2 x+3 y=6 \\
& 4 x+6 y=12 \\
& \hline
\end{aligned}
$$

Cross \rightarrow one solution

Parallel \rightarrow no solutions

Same line \rightarrow infinitely many solutions

Algebraic Methods of Solving Systems of Equations

Substitution: Solve one equation for one of the variables. Substitute the equivalent expression for the variable into the other equation. This results in one equation with one variable.

Elimination: Add the equations (or multiples of the equations) to eliminate one of the variables. Then solve the single variable equation and "back substitute" the result.

Substitution Method

1. Solve one equation for one of the variables (already done if in " $y=$ " form).
2. Substitute the value of the variable into

$$
y=-2 x+8
$$

$$
y=3 x-2
$$

the other equation.
3. Solve for the single variable.
4. Substitute the value of the solved-for variable into either equation to find the other varable.

$$
\begin{array}{rl}
5 x-2=8 & 5 x=10 \\
+2+2 & \div 5 \div 5 \\
& x=2
\end{array}
$$

5. Test your solution

$$
y=3 x-2
$$

$$
\begin{aligned}
& y=3(2)- \\
& y=6-2
\end{aligned}
$$

$$
y=4
$$

$(2,4)$ in the other equation.

$$
y=3()-2 \quad y=6-2 \quad y=-2 x+8 \quad(4)=-2(2)+8
$$

Solve by subsitution

$6 x+2 y=3 \longrightarrow$ No solutions
$y=-3 x+1$
$6 x+2 y=3 \longrightarrow y=-3 x+3 / 2$
$y=-3 x+1 \quad$ The lines were parallel.
$x-3 y=5$
Solution: (17, 4)
$2 x-y=2 \quad$ Solution: $(3 / 2,1)$
$4 x+2 y=8$

Equations in Standard Form

1. Solve both equations for the same variable.

$$
y=-2 x+8 \quad y=x-1
$$

2. Substitute the value of the variable into the other equation.
3. Solve for the single variable.
4. Substitute the value of the solved-for variable into either equation.

$$
\begin{array}{ll}
2 x+y=8 & 6+y=8 \\
2(3)+y=8 & y=2
\end{array}
$$

5. Test your solution $(2,4)$ in

$$
\begin{aligned}
-2 x+8 & =x-1 \\
+2 x & +2 x \\
8 & =3 x-1 \\
+1 & +1 \\
9 & =3 x \quad x=3 \\
\div 3 & \div 3 \quad 3
\end{aligned}
$$

$2 x+y=8$
$-3 x+3 y=-3$ the other equation.

$$
\begin{gathered}
-3(3)+3(2)=-3 \\
-9+6=-3
\end{gathered}
$$

When you solve algebraically, how do you know how many solutions there are? (1,0 , or infinite \#)
$6 x+2 y=4 \quad 6 x+2(-3 x+2)=4$
$y=-3 x+2$
$6 x-6 x+4=4 \quad 4=4$

All the variables "disappeared" and the equation is true:
\longrightarrow Infinitely many solutions How can that be?

$$
\begin{aligned}
& 6 x+2 y=4 \quad \longrightarrow y=-3 x+2 \\
& y=-3 x+2 \quad \text { Different versions of the same equation! }
\end{aligned}
$$

How do you know how many solutions there are using the elimination method (1,0 , or infinite \#) ?

When you perform the elimination step and both variables disappears and you get a number equal to another number:
a. and it's true:

$$
(3=3 \text { or } 0=0)
$$

Infinite \# of solutions (same line)
b. and it's false:

$$
(-2=3 \text { or } 10=0) \longrightarrow \begin{aligned}
& \text { No solutions } \\
& \text { (parallel lines) }
\end{aligned}
$$

Elimination Method: Eliminate one of the variables by adding the equations together.

$$
\left(\begin{array}{r}
x-3 y=5 \\
-x)+5 y=3
\end{array}\right.
$$

What property allows me to add equations together?
"Property of Equality"
Adding these equations will eliminate the ' x ' variable.

$$
\begin{array}{r}
2 x-3 y=5 \\
-4 x+3 y=3
\end{array}
$$

Adding these equations will eliminate the ' y ' variable.

What variable will be eliminated if I add the following equations?

$$
3 x+y=-1
$$

$$
\text { 3. } \quad 2 x+3 y=18
$$

$$
\begin{aligned}
& \text { 1. } \quad \begin{array}{r}
2 x+y=-2 \\
-2 x+3 y=-8
\end{array} \\
& \text { 2. } \quad \begin{aligned}
4 x-3 y & =-2 \\
-2 x+3 y & =-8
\end{aligned}
\end{aligned}
$$

Eliminate one of the variables by adding the equations together.

$$
2 y=8
$$

Replace ' y ' with 4 in

$$
y=4
$$ either of the original

$$
x-3(4)=5
$$ equations, then solve for ' x '.

$$
x=17
$$

Solution: (17, 4)

Check the solution: (using substitution)

If your work indicated the solution to be (17, 4), replace ' x ' with 17 and ' y ' with 4 in both of the original equations, to see if the ordered pair $(17,4)$ is a solution to the system of equations.

$$
\begin{array}{r}
x-3 y=5 \\
-x+5 y=3
\end{array}(17)-3(4)=5 \quad-(17)+5(4)=3
$$

Checks!
Checks!

Solution: (17, 4)

$$
\begin{gathered}
5 y=10 \\
y=2
\end{gathered}
$$

Replace ' x ' with 8 in either of the original equations, then solve for ' y '.

Solution: (8, 2)

Solve the equation using "elimination"

$$
\begin{array}{cc}
4 x-3 y=-2 & -2(-5)+3 y=-8 \\
-2 x+3 y=-8 & 10+3 y=-8 \\
2 x=-10 & 3 y=-18 \\
x=-5 & y=-6
\end{array}
$$

What if the coefficients are not the same?

What is the LCM for the coefficients of ' y '?
$L C M=3 \quad$ You only have to fix one!

$$
\begin{array}{cr}
3^{*}(5 x-y)=-2 * 3 & 15 x-3 y=-6 \\
-2 x+3 y=-8 & -2 x+3 y=-8
\end{array}
$$

$3 x-4 y=-10$
$6 x+3 y=-42$

$$
(-2) 3 x-(-2) 4 y=-10(-2)
$$

$6 x+3 y=-42$
$-6 x+8 y=20 \quad 6 x+3(-2)=-42$ $6 x+3 y=-42$

$$
6 x-6=-42
$$

$$
\begin{gathered}
11 y=-22 \\
y=-2
\end{gathered}
$$

$$
\begin{array}{cl}
\begin{array}{c}
3 x+2 y=6 \\
x-4 y=-12
\end{array} & \begin{array}{c}
3(0)+2 y=6 \\
(0)-4 y=-12
\end{array} \\
\begin{array}{r}
(2) 3 x+(2) 2 y=6(2) \\
x-4 y=-12
\end{array} & \begin{array}{l}
2 y=6 \\
\\
6 x+4 y=12 \\
x-4 y=-12
\end{array}
\end{array}
$$

Solution is $(0,3)$

$$
\begin{gathered}
5 x=0 \\
x=0
\end{gathered}
$$

What if the coefficients are not the same?

$5 x-5 y=-2$
 $-2 x+3 y=-8$

What is the LCM for the coefficients of ' x '?

$$
\text { LCM }=10 \quad \text { You have to fix both! }
$$

$$
\begin{aligned}
& 2^{*}(5 x-5 y)=-2 * 2 \\
& 5^{*}(-2 x+3 y)=-8^{*} 5
\end{aligned}
$$

$$
\begin{aligned}
10 x-10 y & =-4 \\
-10 x+15 y & =-40
\end{aligned}
$$

Linear Equation in 3 Variables:

$$
A x+B y+C z=D \quad 3 x+2 y-z=5
$$

System of Linear Equations: 3 equations, each with the same 3 variables
(3 equations in 3 unknowns)

$$
\begin{array}{r}
A x+B y+C z=D \\
E x+F y+G z=H \\
J x+K y+L z=M
\end{array}
$$

Solving by Elimination
Pick two equations and remove one of the variables

$$
\begin{aligned}
& \text { Eq\#1: } x+2 y-2 z=-15 \quad E q \# 1 / \# 2-3 y-z=9 \\
& \text { Eq\#2: } 2 x+y-5 z=-21 \\
& \text { Eq\#3: } x-4 y+z=18 \quad \text { Eq\#il\#3 }-2 y+z=11 \\
& \text { Eq\#1:-2(} x+2 y-2 z)=(-15)(-2) \\
& \text { Eq\#2 } \quad 2 x+y-5 z=-21 \\
& -2 x-4 y+4 z=30 \\
& \text { Eq\#1/\#2 }-3 y-z=9 \\
& \text { Eq\#1: }-1(x+2 y-2 z)=(-15)(-1) \\
& \text { Eq\#3: } \quad x-4 y+z=18 \\
& -x-2 y+2 z=15 \\
& x-4(-4)+(3)=18 \\
& x+16+3=18 \\
& x=-1
\end{aligned}
$$

