Math-3
 Lesson 6-9

Area of Triangles

The area of this rectangle is....?

Rectangle area formula.

$A_{\text {rectangle }}=L^{*} W$

$$
\mathrm{W}=\text { width }
$$

$L=$ length

Triangle area formula.

$$
\begin{gathered}
A_{\text {triangle }}=\frac{1}{2} * A_{\text {rectangle }}=\frac{1}{2} * L * W \\
A_{\text {triangle }}=\frac{1}{2} * B * h
\end{gathered}
$$

Altitude of a triangle: The perpendicular distance from any vertex to its opposite side.

Altitude of a triangle: means the same thing as the height of a triangle.

$\underline{\text { Height }=\text { Altitude }}$

three

Triangle Area

Area formula: requires the use of matching heights and sides.

Using segment BC as the base, requires the use of segment AE as the height.

Using segment AC as the base, requires the use of segment BD as the height.

Using segment AB as the base, requires the use of segment FC as the height.

Find the triangle area. (Use the altitude from point A as its height.)

$$
\mathrm{A}_{\Delta}=\frac{1}{2} * \text { base }^{*} \text { height }
$$

$\frac{\mathrm{h}}{6.12}=\sin 41.8^{\circ}$
$h=6.12 \sin 41.8^{\circ}$

$$
\begin{gathered}
\mathrm{A}_{\Delta}=\frac{1}{2} *(6.32) *(6.12 \sin (41.8)) \\
\mathrm{A}_{\Delta}=12.89 \text { units }^{2}
\end{gathered}
$$

Find the triangle area. (Use the altitude from point B as its height.)

$$
\mathrm{A}_{\Delta}=\frac{1}{2} * \text { base } * \text { height }
$$

$$
\frac{\mathrm{h}}{6.32}=\sin 41.8^{\circ}
$$

$$
h=6.32 \sin 41.8^{\circ}
$$

$$
\begin{gathered}
\mathrm{A}_{\Delta}=\frac{1}{2} *(6.12) *(6.32 \sin (41.8)) \\
\mathrm{A}_{\Delta}=12.89 \text { units }^{2}
\end{gathered}
$$

There are two right triangles that can be used to solve for ' h '.

$$
\begin{aligned}
& \sin A=\frac{o p p}{h y p} \\
& \sin (48)=\frac{h}{8} \\
& \mathrm{~h}=8^{*} \operatorname{Sin}\left(48^{\circ}\right) \\
& \mathrm{h}=5.9
\end{aligned}
$$

Area $=0.5 *$ base * height
Area $=1 / 2(10)(5.9)$
Area $=29.5$ square units

What is the area of $\triangle A B C$ given that $c=25, b=23$, and $\mathrm{a}=14$. 2. Using angle C, find the appropriate height..

$$
\begin{gathered}
\sin 81.1=h / 14 \\
h=14 \sin 81.1 \\
h=13.8
\end{gathered}
$$

$$
\text { Area }=0.5 * \text { base } * \text { height }
$$

$$
\text { Area }=0.5(23)(13.8)
$$

$$
\text { Area }=158.7 \text { units }^{2}
$$

Let's look at it again.
Area $=0.5 *$ base $*$ height Area $=0.5(23)(13.8)$

$$
\begin{aligned}
& h=14 \sin 81.1 \\
& h=a \sin C
\end{aligned}
$$

$$
\text { Area }=0.5 * \mathrm{a} * \mathrm{~b} * \sin \mathrm{C}
$$

Let's look at it again. SIDE ANGLE SIDE

Area $=0.5 *$ base $*$ height Area $=0.5(23)(13.8)$
$h=14 \sin 81.4$

$$
h=a \sin C
$$

Area $=0.5 * \mathrm{a} * \mathrm{~b} * \sin \mathrm{C}$

Notice: in the formula you see all three letters 'a', 'b', and 'c'

$\sin A=\frac{o p p}{h y p}$

$$
\begin{aligned}
& \sin C=\frac{h}{b} \\
& h=b \sin C
\end{aligned}
$$

Substitute into area formula

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} * \text { base }{ }^{*} \text { height } \\
& \text { Area }=1 / 2^{*} a^{*} b^{*} \sin
\end{aligned}
$$

SIDE ANGLE SIDE

Notice: in the formula you see all three letters 'a', 'b', and 'c'

Find the area of triangle $A B C$
Area $=1 / 2^{*} a^{*} b^{*} \sin C$

$$
\text { Area }=1 / 2(7)(8) \sin (25)
$$

$$
\text { Area }=11.8
$$

SIDE ANGLE SIDE

