$$
\begin{aligned}
& \text { Math-3 } \\
& \text { Lesson 6-8 }
\end{aligned}
$$

Periodic Behavior

Compare:

$f(x)=\sin x \quad g(x)=\frac{\text { 相 } 2 \sin x}{}$

$$
g(x)=\sin x \quad f(x)=1+\sin x
$$

shift

Centerline of the Oscillation: corresponds to the up/down translation.

Vocabulary

Period: the horizontal distance needed to complete one full cycle of the oscillation.

Period: the horizontal distance needed to complete one full
cycle of the oscillation.
$g(x)=\sin x$
Period $=2 \pi$

$$
\begin{gathered}
f(x)=\sin 2 x \\
\text { Period }=\frac{1}{2} * 2 \pi=\pi
\end{gathered}
$$

Sinusoid

$f(x)=a \sin b x$

If a is negative: reflection across x-axis

1. Amplitude:
(1⁄2 of peak to peak distance) $=|a|$
2. Period: length of horizontal axis encompassing one complete cycle $=\frac{2 \pi}{|b|}$

3. $\underline{\text { Frequency }}=\quad \frac{|b|}{2 \pi}$

Frequency $=1 /$ period

Sinusoid
$f(x)=3 \sin 2 x$

1. Amplitude:
$(1 / 2$ of peak to peak distance $)=|a|=3$
2. Period: length of horizontal axis encompassing one complete cycle $=\frac{2 \pi}{|b|}=\frac{2 \pi}{2} \quad=\pi$

3. Frequency $=\frac{|b|}{2 \pi}=\frac{2}{2 \pi}=\frac{1}{\pi}$

Frequency $=1 /$ period

Sinusoid: a function that models height vs. time.
$h(t)=a \sin (b t)+k$
What is the "centerline" of the sinusoid? $\quad y=k$

Amplitude: The maximum distance above/below the centerline. $|a|$

Horizontal stretch factor:
$\overline{|b|}$
Period $=$ HSF * period of the parent (either 360 degrees, or 2π radians)
Period $=\frac{2 \pi}{|b|}, \frac{360^{\circ}}{|b|}$ (time required to complete one cycle)
Frequency $=\frac{|b|}{2 \pi}$ (\# of oscillations per unit time: " Hz ")
$f(x)=a \sin (b x-h)+k$

Horizontal stretch factor and horizontal shift must be separated (factor off the coefficient of ' x ')
$f(x)=a \sin b((x-h / b)+d$
$f(x)=3 \sin (2 x+\pi / 3)+5=3 \sin 2(x+\pi / 6)+5$

1. Amplitude: $(1 / 2$ of peak to peak distance $)=|3|=3$
2. Left/right shift: left $\pi / 6$ radians
3. Horizontal stretch factor $=$ reciprocal of the coefficient of the input variable.

$$
1 / b=1 / 2
$$

4. Period of the function $=$ HSF * pi or HSF *360 $\frac{2 \pi}{2}=\pi$
5. Centerline of oscillation $=$ vertical shift number " k ": $y=5$

Sinusoid: $\quad h(t)=a \sin (b t)+k$

The Radius of the Lagoon Ferris Wheel is 21.8 m . The bottom of the Ferris Wheel is 4 feet above ground level (you have to go up onto a platform to get on the Ferris Wheel). Once the Ferris Wheel is spinning it takes 40 seconds to complete one revolution.

Write an equation that models the height of a point on the Ferris wheel as a function of time.

Sinusoid: $\quad h(t)=a \sin (b t)+k$

The Radius of the Lagoon Ferris Wheel is 21.8 m . The bottom of the Ferris Wheel is 1.2 m above ground level (you have to go up onto a platform to get on the Ferris Wheel). Once the Ferris Wheel is spinning it takes 40 seconds to complete one revolution.
$2 \pi, 360^{\circ}$
Period $=\frac{2 \pi}{|b|}, \frac{360}{|b|}$ (time required to complete one cycle)

$$
40=\frac{360}{|b|}
$$

$$
b=\frac{360}{40}=9
$$

$h(t)=a \sin (9 t)+k$

Sinusoid: $\quad h(t)=a \sin (b t)+k \quad h(t)=a \sin (9 t)+k$
The Radius of the Lagoon Ferris Wheel is 21.8 m . The bottom of the Ferris Wheel is 1.2 m above ground level (you have to go up onto a platform to get on the Ferris Wheel). Once the Ferris Wheel is spinning it takes 40 seconds to complete one revolution.
$\mathrm{k}=$ Vertical shift $=$ centerline of the oscillation.

$$
\begin{aligned}
& k=1.2 \mathrm{~m}+21.8 \mathrm{~m} \\
& k=23 \mathrm{~m} \\
& h(t)=a \sin (9 t)+23
\end{aligned}
$$

Sinusoid: $\quad h(t)=a \sin (b t)+k \quad h(t)=a \sin (9 t)+23$

The Radius of the Lagoon Ferris Wheel is 21.8 m . The bottom of the Ferris Wheel is 1.2 m above ground level (you have to go up onto a platform to get on the Ferris Wheel). Once the Ferris Wheel is spinning it takes 40 seconds to complete one revolution. amplitude $=\underline{\text { one half the "peak to peak" distance }=\text { circle radius }}$ $a=21.8 \mathrm{~m}$
$h(t)=21.8 \sin (9 t)+23$

Harmonic Motion
 $$
d(t)=a \sin (b t)+k
$$

A mass oscillating up and down on the bottom of a spring can be modeled as harmonic motion (assuming perfect elasticity and no friction or air resistance).
If the weight is displaced a maximum of 4 cm , find the modeling equation if it takes 3 seconds to complete one cycle.

1. Draw the picture. x-axis: time
y-axis: Distance below spring attachment point.
2. Write the equation.
$d=a \sin (\omega t)$

Calculating Harmonic Motion

1. Draw the picture.
2. Write the equation.
3. Solve the equation.

$$
\begin{gathered}
\text { period }=\frac{2 \pi}{\omega}=3 \mathrm{sec} \\
\omega=2 \pi^{*} \frac{1}{3} h z \quad \omega=\frac{2 \pi}{3} \\
d=4 \sin \left(\frac{2 \pi}{3} t\right)
\end{gathered}
$$

distance
y-axis: Distance below spring attachment point.

$$
d=a \sin (\omega t)
$$

Amplitude $=4$ "

Your turn:

5. A mass oscillating up and down on the bottom of a spring can be modeled as harmonic motion (assuming perfect elasticity and no friction or air resistance). If the weight is displaced a maximum of 2 cm , find the modeling equation if it takes 6 seconds to complete one cycle.
6. Draw the picture.
x-axis: time
y-axis: Distance below spring attachment point.
7. Write the equation.
$d=a \sin (\omega t)$
distance

Alternation Current (AC)

Frequency: 60 Hz Amplitude: 120 volts $60 \mathrm{~Hz}=60$ cycles per second.

Neglecting any phase shift, what is the equation that models the voltage as a function of time?

$$
V(t)=\operatorname{asin} b t \quad \text { Amplitude }=120 \quad V(t)=120 \sin b t
$$

We take sines of angles so we must have a unit conversion factor (from time (in seconds) to degrees) in the coefficient of ' t '.

$$
\begin{gathered}
\text { Period }=\frac{2 \pi}{b} \quad \text { frequency }=\frac{b}{2 \pi} \quad \frac{60}{\sec }=\frac{b}{2 \pi} \\
b=120 \pi \frac{\text { degree }}{\text { sec }}
\end{gathered} \quad V(t)=120 \sin 120 \pi t
$$

Alternation Current (AC)

Frequency: 60 Hz Amplitude: 120 volts $60 \mathrm{~Hz}=60$ cycles per second.

Neglecting any phase shift, what is the equation that models the voltage as a function of time?

$$
V(t)=\operatorname{asin} b t \quad \text { Amplitude }=120 \quad V(t)=120 \sin b t
$$

We take sines of angles so we must have a unit conversion factor (from time (in seconds) to degrees) in the coefficient of ' t '.

$$
\text { Period }=\frac{360}{b} \quad \text { frequency }=\frac{b}{360} \quad \frac{60}{\text { sec }}=\frac{b}{360^{0}}
$$

$$
b=21600 \frac{\text { degree }}{\text { sec }}
$$

$$
V(t)=120 \sin 21600 t
$$

A tuning fork vibrates at a frequency of 6000 Hz (6000 cycles per second) The amplitude of motion of the tuning fork is 0.05 cm . Find the equation for harmonic motion for this situation.

$$
d=a \sin (\omega t)
$$

$$
\text { frequency }=\frac{\omega}{2 \pi}
$$

$$
6000=\frac{\omega}{2 \pi}
$$

$12000 \pi=\omega$
$d=0.05 \sin \left(12000 \pi^{*} t\right)$

