Math-3 Lesson 6-7

The Sine and Cosine Functions.

What is a function? $\quad f(x)$
Function: a rule that matches each input to exactly one output.
What is the domain of a function?
Domain: the set of all allowable input values of a function (the ' x ' values that have corresponding ' y ' values).

What is the range of a function?
Range: the set of all output values of a function (the ' y ' values).

Graph of the Sine Function $\quad f(\theta)=\sin \theta$
Think of a point moving around the unit circle. Input value: the angle
The input value (standard position angle measure) will be graphed on the x-axis of another plot

Output value: the y-value of the point as it goes around the circle.
The output value (the y-value of the point) will be graph on the y-axis of the other plot

Graph of the Sine Function:

Think of $\underline{\sin \theta}$ as the distance that the point is above (or below) the x-axis, determined by ' $\underline{\theta}$ ' (the standard position angle passing through the point).

Sinusoid $\quad f(\theta)=\sin \theta$

Domain $=$?
$-\infty<\theta<\infty$

Range $=$?
$-1 \leq y \leq 1$
x-intercepts?
$x=n^{*} \pi \quad \mathrm{n} \in$ integers

The cosine function (as opposed to the cosine ratio)
$f(\theta)=\cos \theta$
What is the input to the function?

Graph of the Cosine Function

Think of a dot traveling around the circle to the right.
Think of $\cos \theta$ as the distance to the right (or left) of the y-axis as determined by ' $\underline{\theta}$ ' (the angle).

Degrees
$f(\theta)=\cos \theta$
Domain $=$?

$$
-\infty<\theta<\infty
$$

Range = ?
$-1 \leq y \leq 1$
x-intercepts?
$x=90^{\circ}+180 * n \mathrm{n} \in$ integers

$$
\cos (\theta-90)=\sin (\theta)
$$

$\underline{\text { Radians }}$

$f(\theta)=\cos \theta$

x-intercepts?
$\cos \left(\theta-\frac{\pi}{2}\right)=\sin (\theta)$

The "Transformation Equation"

> Vertical
> reflection ${ }_{\text {stretch }}$ shift
> $y=(-1) * d * f(x-\stackrel{\rightharpoonup}{\boldsymbol{\rightharpoonup}})+d \stackrel{\uparrow}{\boldsymbol{\tau}}$ shift
$\left.f(x)=-x^{2}\right)$ Reflection across x-axis
$f(x)=\uparrow a|x|$ Vertical stretch
$f(x)=|x-c|$ Horizontal shift
$f(x)=|x|+a^{\prime} \quad$ Vertical shift

Describe the transformations these function make on their parent functions.

$$
\begin{aligned}
& f(x)=|x| \\
& g(x)=2|x-4|+5
\end{aligned}
$$

Vertically stretched by a factor

 of 2 , shifted right 4 and up 5$$
\begin{aligned}
& h(x)=x^{2} \\
& k(x)=0.25(x+1)^{2}-6
\end{aligned}
$$

Vertically stretched by a factor of 0.25 , shifted left 1 and down 6
$f(x)=f a \sin x$
Amplitude: The vertical distance between the centerline of the graph and either the maximum or minimum output value.

For the sine and cosine functions, we call the coefficient ' a ' the amplitude of the function (which in general refers to the vertical stretch factor).

Compare:
$f(x)=\sin x$ $g(x)=2 \sin x$

$g(x)=\sin x$
$f(x)=1+\sin x$

Centerline of the Oscillation: corresponds to the up/down translation.

$$
g(x)=4 f(x) \quad g(x)=4 x^{2}
$$

Vertical Stretch: multiplying the original function by 4, "vertically stretches" it by a factor of 4 .

Horizontal Stretch: replacing ' x ' with a number multiplied by ' x ',

$$
h(x)=(2 x)^{2}=4 x^{2}
$$

Multiplying the input value by '2' causes a horizontal stretch by a factor of $1 / 2$.

Predict what you think happens Horizontal stretch or shrink?

horizontal shrink

Stretched by a factor of $1 / 2$ (we just use the word stretch)

$$
f(x)=a \sin b x
$$

Period: the horizontal distance along the x-axis needed to complete one full cycle of the oscillation.
$g(x)=\sin x$
Period $=2 \pi$

$\underline{\text { Period }}=\frac{2 \pi}{|b|}$
Frequency $=\frac{|b|}{2 \pi}$
Frequency $=1 /$ period
$f(x)=\sin 2 x$
horizontal stretch factor $=\frac{1}{2}$
$g(x)=\sin x$

Frequency = 1 cycle every 2 pi radians.

Frequency $=1$ cycle every pi radians.

Compare:
$f(x)=a \sin \not \operatorname{br}_{x} x$

$$
g(x)=\sin x \quad f(x)=\sin 3 x
$$

horizontal stretch factor $=\frac{1}{b} \quad=\frac{1}{3}$
What is the period of $\mathrm{g}(\mathrm{x}) ?=2 \pi$
What is the period of $\mathrm{f}(\mathrm{x}) ?=\frac{1}{b} * 2 \pi=\frac{1}{3} * \frac{2 \pi}{b}=\frac{2 \pi}{3}$
What is the frequency of $f(x)$? Frequency $=3$ cycles every 2 pi radians.

Your turn:

$f(x)=a \sin b x$

$g(x)=\cos x \quad f(x)=4 \cos 5 x$
What is the horizontal stretch factor ?. $=\frac{1}{5}$
What is the period of $\mathrm{g}(\mathrm{x}) ?=2 \pi$
What is the period of $f(x) ?=\frac{2 \pi}{b}=\frac{2 \pi}{5}$

What is the amplitude of $f(x) ?=4$
What is the frequency of $f(x) ?=\frac{5}{2 \pi} \quad \begin{aligned} & 5 \text { cycles every } \\ & \text { 2pi radians. }\end{aligned}$

Vertical and now horizontal stretch factors

$$
f(x)=a \sin b x
$$

a: Vertical
stretch factor $=a$

$$
f(x)=\because \sin \left(\frac{\pi}{2} x\right.
$$

Reflected across x-axis.
Vertically stretched by a factor of 2 .

π

$$
\text { Period }=\mathrm{HSF}^{*} 2 \pi \quad \frac{2}{\pi} * 2 \pi=4 \text { radians }
$$

Frequency $=1 /$ period 2 pi radians.

$$
g(x)=\sin x \quad f(x)=-5 \sin 3 x
$$

Describe how $\mathrm{f}(\mathrm{x})$ is a transformation of the parent function $\mathrm{g}(\mathrm{x})$. $f(x)=(5) \sin 3 x$ Reflected across x-axis. Vertically stretched by a factor of 5 (amplitude). Horizontally shrunk by a factor of

$$
\text { Period }=\text { NSF * } 2 \pi=\quad \frac{2 \pi}{3} \text { radians }
$$

Frequency = 3 cycles every 2 pi radians.

$g(x)=\sin x$

$$
\frac{2 \pi}{3} \text { radians }
$$

Equivalent Equations (input variable is theta)
$f(x)=a \sin (b \theta-c)+k$
In this version, the left/right shift is "mixed together" with the horizontal stretch factor.
$f(x)=a \sin b(\theta-c / b)+k$
By factoring out the coefficient of theta, we have separated the HSF from the phase shift.
$f(x)=4 \sin (3 \theta-\pi)+2$
$f(x)=4 \sin 3(\theta-\pi / 3)+2$

$$
\begin{aligned}
& f(x)=-5 \sin \left(\frac{\theta}{3}-\frac{\pi}{2}\right)+2 \\
& f(x)=4 \sin \frac{1}{3}\left(\theta-\frac{3 \pi}{2}\right)+2
\end{aligned}
$$

$f(x)=3 \sin \left(2 \theta+\frac{\pi}{2}\right)$
$f(x)=a \sin (b x-c)+d$
$f(x) \ominus \oplus 3 \sin \left(2 \theta \theta-\left(\frac{\pi}{4}\right)\right)$ Not Reflected across x-axis. Shifted right by $\pi / 4$ radians
$f(x)=a \sin b(x-c / b)+d$

$$
V S F=3 \quad H S F=1 / 2
$$

Frequency $=2$ cycles every 2pi radians \rightarrow 1/pi

$$
g(x)=\sin x
$$

≈ 6.28 radians

π radians

$$
f(x)=-0.5 \sin \left(3 x+\frac{\pi}{12}\right)-2
$$

Horizontal stretch \& left/right shift mixed together \rightarrow separate them

$$
f(x)=-0.5 \sin 3(x+\pi / 4)-2
$$

Amplitude = ? 0.5 units
Phase shift = ? Left pi/4
Period $=? \quad 2 \mathrm{pi} / 3$ radian per cycle.
Frequency $=? \quad 3$ cycles every 2 pi radians.
Center line: $\quad y=-2$

