Math-3

Lesson 6-5 The Law of Sines (Ambiguous Case)

If the following information is given "Walk around the block"

Start at the first side or angle that is known then list the order of the known items.

Side, Angle, Side \rightarrow SAS

This means: "the measures of two sides and the <u>included</u> angle are known.

There are two unknown values in the "loops."

You cannot solve a single equation that has two unknown values!

Law of Sines will NOT work for <u>SAS</u>

If the following information is given: "Walk around the block"

Start at the first side or angle that is known then list the order of the known items.

Side, Side, Side \rightarrow SSS

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

Law of Sines will NOT work for <u>SSS</u>.

Can the Law of sines be used for:

- SAS ? no
- SSS? no
- SSA? yes, BUT....
- AAA? no, trangle can be scaled up or down in size (no unique triangle).

What is a triangle?

3 segments joined at their endpoints

SSA: The "Ambiguous" Case

If an angle and its opposite side are known, and another side is known (Not SAS), we have a triangle.

We do not know the length of the bottom side.

We can "swing" side 'a' until it touches the bottom side at its end point. This makes <u>another</u> triangle.

SSA: The "Ambiguous" Case

IF: (1) the side <u>opposite</u> the given angle is <u>shorter</u> than the <u>adjacent</u> side, and

(2) The angle is acute

 \rightarrow you <u>can</u> have <u>two triangles</u>.

Which of the following cases might give you two possible triangles?

$$A = 68^{\circ}$$
 $b = 68$ $a = 85$
 $A = 25^{\circ}$ $b = 7$ $a = 5$
 $A = 118^{\circ}$ $b = 8$ $a = 20$

Will this give you two triangles?

IF: The given angle is <u>acute (<90°)</u> the side <u>opposite</u> the given angle is <u>shorter</u> than the <u>adjacent</u> side, you may have <u>two triangles</u>.

IF: The given angle is <u>acute (<90°)</u> the side <u>opposite</u> the given angle is shorter than the adjacent side, there are three possibilities.

1. The opposite side is too short to even make a triangle.

2. The opposite side is *just long enough* to touch once \rightarrow right triangle.

3. The o places $\rightarrow 2$

pposite side can touch in two
2 triangles.
$$b = 7$$
 $a = 5$

a

a

How can you tell which case it is? (0, 1, or 2 triangles)

We calculate the "just right" opposite side length that will give us the right triangle.

If the opposite side length is less than this "Goldilocks" length, \rightarrow <u>0 triangles</u>.

If the opposite side length is the "Goldilocks" length, it is a right triangle \rightarrow <u>1 triangle</u>.

If the opposite side length is greater than this "Goldilocks" length AND is shorter than the adjacent side

 \rightarrow <u>2 triangles</u>.

SSA Case: Is it 0, 1, or 2 triangles?

You must calculate if the opposite side makes a right angle!

y = "Goldilocks" length

$$A = 25^{\circ}, b = 7, a = 5$$

To make a right angle: 'a' = 2.95.

$$\sin 25 = \frac{y}{7}$$

 $y = 7 \sin 25^{\circ}$

"just right" length < 'a' < adjacent side length 2.95 < (a = 5) < 7

 \rightarrow 2 triangles.

$$A = 36.9^{\circ}, b = 5, a = 4$$

4

Is this the ambiguous case?

y = length for a single, right-triangle.

3 < 4 < 5

 \rightarrow 2 triangles.

$$\sin 36.9 = \frac{y}{5}$$

y = 5 sin 36.9°

5

36.9°

Opposite side is too short \rightarrow 0 triangles.

A's & S's	Given Angle and Sides	#of Triangles:
SSA	Adj > opp and opp > "just right"	2
	Adj > opp and opp = "just right"	1
	Adj > opp and opp < "just right"	0
	Adjacent side < opposite side	1

a. What is the situation? (SSA, ASA, AAS)b. How many triangles? (one, two, or none)

$$A = 52^{\circ}$$
, $a = 32$, $b = 42$

$$A = 28^{\circ}, C = 75^{\circ}, C = 20$$

$$A = 40^{\circ}$$
, $a = 13$, $b = 16$

(<u>Hint</u>: draw the triangle!!!)

<u>SSA</u>: The angle is obtuse \rightarrow 0 triangles or 1 triangle.

Finding the Height of a Pole

Two people are 2.5 meters apart on opposite sides of a pole. The angles of elevation from the observers to the top of the pole are 51° and 68°. Find the height of the pole.

- 1. Find either 'a' or 'b' using Law of Sines.
 - Solve the right triangle using right triangle rules where <u>height</u> is the side opposite the angle.