Math-3
 Lesson 5-6

Solve Exponential

And
Logarithmic Equations

Solving a Linear Equation:
"Isolate the variable"

What does "solve" a single variable equation mean?
Find the value of ' x ' that makes the equation true.
$3 x+2=4 x-5$ subtract 3 x from both sides
$2=x-5 \quad$ add $\underline{5}$ to both sides
$7=x$

Radical Equation

Solve: $\sqrt{3 x-5}=x-3$ "Undo the radical"
$(\sqrt{3 x-5})^{2}=(x-3)^{2} \quad$ square both sides
$3 x-5=x^{2}-6 x+9$
Get into standard form!!!!!

$$
\begin{aligned}
& 0=x^{2}-9 x+14 \\
& 0=(x-7)(x-2) \\
& x=7,2
\end{aligned}
$$

$$
\sqrt{3(2)-5}=(2)-3
$$

$$
\sqrt{1} \neq-1
$$

Solving an Exponential Equation: The easiest problem

$$
\begin{array}{cc}
2^{x}=2^{4-x} & \text { Exponents have to be equal to each other! } \\
x=4-x & x=2 \\
+\mathrm{x} \quad+\mathrm{x} & \text { Check your answer! } \\
2 x=4 & 2^{2}=2^{4-2} \\
\div \mathrm{x} \quad \div \mathrm{x} & \\
7^{2 x+1}=7^{13-4 x} & x=2 \\
2 x+1=13-4 x & \\
+4 \mathrm{x} \quad+4 \mathrm{x} \\
6 x+1=13 \\
-1 & -1
\end{array}
$$

Equivalent Powers with different bases.

$$
\begin{aligned}
& 4^{1}=2^{2} \\
& 8^{1}=2^{3}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\text { Harder }}{\left(2^{2}\right)^{2}}=2^{4} \\
9^{2}=\left(3^{2}\right)^{2}=3^{4} \\
\left.9^{2 x}=3^{2}\right)^{2 x}=3^{4 x}
\end{gathered}
$$

Easy

Change the base of the power as indicated:

$$
\begin{gathered}
27^{1}=3^{?} \\
16^{2}=4^{?} \\
25^{2 x}=5^{?}
\end{gathered}
$$

Solving using "convert to same base"

$$
\begin{array}{ll}
2^{4 x-1}=8^{x-1} & \text { "convert to same base" } \\
2^{4 x-1}=\left(2^{3}\right)^{\mathrm{x}-1} & \begin{array}{c}
\text { Exponent of a power } \\
\text { Exponent Property }
\end{array} \\
2^{4 x-1}=2^{3 x-3} & x=-2 \\
4 x-1=3 x-3 & \text { Check your answer! } \\
-3 x & 2^{4(-2)-1}=8^{-2-1} \\
x-1=-3 & 2^{-9}=8^{-3} \\
+1 & \left(2^{-9}=8^{-3}\right)^{-1} \\
& 2^{9}=8^{3} \\
& 512=512
\end{array}
$$

Solving using "convert to same base"

$9^{2 x}=27^{x-1} \quad$ "convert to same base"

$$
\begin{array}{cc}
\left(3^{2}\right)^{2 x}=\left(3^{3}\right)^{x-1} & \begin{array}{l}
\text { Power of a power } \\
\text { Exponent Property }
\end{array} \\
3^{2^{*} 2 x}=3^{3(x-1)} & \text { Check your answer! }
\end{array} 9^{2(-3)}=27^{-3-1} .
$$

$531441=531441$

Solving using "log of a power" property

$9^{2 x}=27^{x-1} \quad$ Take natural log of both side

$\ln 9^{2 x}=\ln 27^{x-1}$
"log of pwr property"

$$
\begin{gathered}
2 x \ln 9 \\
\div \ln 9
\end{gathered}=(x-1) \ln 27
$$

$$
2 x=(x-1) \frac{\ln 27}{\ln 9}
$$

simplify
$2 x=(x-1)(1.5) \quad$ simplify
$2 x=1.5 x-1.5$
$-1.5 x-1.5 x$

$$
\begin{gathered}
0.5 x=-1.5 \\
* 2 \\
x=-3
\end{gathered}
$$

Same solution as previous method!

$$
\begin{gathered}
\left(3^{2}\right)^{2 x}=\left(3^{3}\right)^{x-1} \\
3^{4 x}=3^{3 x-3} \\
4 x=3 x-3 \\
x=-3
\end{gathered}
$$

Solve using "convert to same base"

$8^{x+2}=4 r^{x-2}$

8 and 4 are both powers of 2.

$$
\left(2^{3}\right)^{x+2}=\left(2^{2}\right)^{x-2}
$$

Power of a Power property
$2^{3 x+6}=2^{2 x-4} \quad$ "undo the power"
$3 x+6=2 x-4$
Did I do a step mentally?
$-2 x \quad-2 x$
$x+6=-4$

$$
x=-10
$$

Solving using "log of a power" property

$$
8^{x+2}=4^{x-2} \quad \text { Take natural log of both side }
$$

$\ln 8^{x+2}=\ln 4^{x-2}$ "log of pwr property"

$$
\begin{array}{cl}
(x+2) \ln 8=(x-2) \ln 4 & 3 x+6=2 x-4 \\
\div \ln 8 & \div \ln 8 \\
(x+2)=(x-2) \frac{\ln 4}{\ln 8} \text { simplify } & x=-10
\end{array}
$$

$x+2=(x-2)(0.6666666)$ simplify

$$
\begin{aligned}
& x+2=(x-2)\left(\frac{2}{3}\right) \\
& 3(x+2)=(x-2)\left(\frac{2}{3}\right)(3)
\end{aligned}
$$

Sometimes you can't rewrite the exponentials with the same bases so you have no choice. Use log of a power property.

\[

\]

Solve using the "log of a power property"

$5^{x+2}=4^{x-2} \quad$ Take natural log of both sides

$$
\begin{aligned}
& \ln 5^{x+2}=\ln 4^{x-2} \quad \text { Power property } \\
& (x+2) \ln 5=(x-2) \ln 4 \\
& 2=-0.1387 x-1.7227 \\
& \div \ln 5 \\
& \ln 5+1.7227 \\
& \text { +1.7227 } \\
& x+2=(x-2) \frac{\ln 4}{\ln 5} \\
& x+2=(x-2)(0.8614) \\
& x+2=0.8614 x-1.7227 \\
& \text {-x } \\
& 3.7227=-0.1387 x \\
& \div-0.1387 \div-0.1387 \\
& x=-26.8399
\end{aligned}
$$

Solve for ' x ' (how do you get the exponent ' x ' all by itself?
$8^{x}-2=5$ "Isolate the exponential"

$$
\begin{gathered}
+2+2 \\
8^{x}=7 \quad \text { "convert to a log" }
\end{gathered}
$$

$$
x=\log _{8} 7 \quad \begin{gathered}
\text { Change of base } \\
\text { formula }
\end{gathered} \quad x=\frac{\log 7}{\log 8}
$$

$$
x=0.9358
$$

$$
x=0.9358
$$

Solve using "undo the exponential"

$$
\begin{gathered}
3^{2 x-1}+5=7 \text { "Isolate the exponential" } \\
-5 \quad-5
\end{gathered}
$$

$3^{2 x-1}=2 \quad$ "Undo the exponential"

$$
2 x-1=\log _{3} 2 \underset{\text { base formula }}{\rightarrow \text { Change of }} 2 x-1=\frac{\ln 2}{\ln 3}
$$

$$
2 x-1=0.63093
$$

$$
+1 \quad+1
$$

$$
2 x=1.63093
$$

$$
\div 2 \quad \div 2
$$

$$
\begin{gathered}
2 x-1=0.63093 \\
+1 \quad+1 \\
2 x=1.63093 \\
\div 2
\end{gathered}
$$

$$
x=0.815
$$

$$
x=0.815
$$

The easiest log equation.

$$
\begin{aligned}
\log (x+3) & =\log (2 x-1) \\
x+3 & =2 x-1 \quad \rightarrow x=2
\end{aligned}
$$

Why does this work?

$$
y=y
$$

$$
\begin{array}{cl}
y=\log (x+3) & 10^{y}=x+3 \\
y=\log (2 x-1) & 10^{y}=2 x-1
\end{array}
$$

Substitution Property

$$
\begin{gathered}
x+3=10^{y}=2 x-1 \\
x+3=2 x-1
\end{gathered}
$$

Some functions don't have domain of all real numbers \rightarrow equations of these types may have extraneous solutions

Extraneous solution: an apparent solution that does not work when plugged back into the original equation.

You MUST check the solutions in the original equation for any equation this is of the function type that has a restricted domain.

Square root equations Radicands cannot be negative Square roots do not equal negative numbers

Rational equations Denominators cannot equal zero

Log equations
Logarands cannot be zero or negative

Solve:

$$
\begin{gathered}
\log (x-5)=\log (2 x+3) \\
x-5=2 x+3 \\
x=-8
\end{gathered}
$$

Remember to check for extraneous solutions by plugging the solution for ' x ' back into the original equation.

$$
\begin{gathered}
\log (-8-5)=\log (2(-8)+3) \\
\log (-13)=\log (-13)
\end{gathered}
$$

Can you have a negative logarand?

$\log _{2} 5^{x}=5 \quad$ Power property of logarithms

$x \log _{2} 5=5 \rightarrow$ Change of base $x \frac{\ln 5}{\ln 2}=5$

$$
\begin{aligned}
& 2.32192 x=5 \\
& \div 2.32192 \quad \div 2.32192 \\
& x=2.1534
\end{aligned}
$$

Use inverse property of multiplication

$$
x=5 \frac{\ln 2}{\ln 5}
$$

$$
x=2.1534
$$

Solving Logs requiring condensing the product.

$\log 2 x+\log (x-5)=2$ "condense the product" $\log 2 x(x-5)=2 \quad$ "undo the logarithm"
$10^{2}=2 x(x-5)$
$100=2 x^{2}-10 x$
$2 x^{2}-10 x-100=0 \quad$ Divide both sides by ' 2 '
$x^{2}-5 x-50=0 \quad$ factor
$(x-10)(x+5)=0 \quad$ Zero product property

$$
x=10,-5
$$

Check for extraneous solutions:
$\log 2 x+\log (x-5)=2$
$\log (2 * 10)+\log (10-5)=2$
$\log (20)+\log (5)=2 \quad$ All logarands are positive © $\log 100=2 \quad$ "Condense the product" $\quad 10^{2}=100$

Checks
$\log (2)(-5)+\log (-5-5)=2$
$\log (-10)+\log (-10)=2 \quad$ Negative logarands $:$
$x=5$ is an extraneous solution.

More complicated Logarithmic Equations

$$
\begin{aligned}
& 2+\log _{2} 5^{x-2}=7 \quad \text { "Isolate the logarithm" } \\
& -2 \\
& \log _{2} 5^{x-2}=5 \quad \text { "undo the logarithm" } \\
& \begin{array}{c}
(x-2) \log _{2} 5=5 \\
\div \log _{2} 5 \quad \div \log _{2} 5 \\
x-2=2.15338 \\
+2 \quad+2 \quad \text { Add '2' to both sides. } \\
x=4.1524
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
\log _{4}(5 x-1)=3 & \text { "Isolate the logarithm" } \\
5 x-1=4^{3} & \text { "undo the logarithm" }
\end{array}
$$

$$
5 x-1=64 \quad \text { Add ' } 1 \text { ' to both sides }
$$

$$
5 x=65 \quad \text { Divide both sides by ' } 5 \text { ' }
$$

$$
x=13
$$

Plug back in to check!
$\log _{4}(5 * 13-1)=3$
$\log _{4} 64=3 \quad$ Checks

