Math-3 Lesson 5-5

Properties of Logarithmic Functions
(Product of Logs
Log of a Power)
$f(x)=5^{2 x+4} \quad$ Find $\quad f^{-1}(x)$

$$
\begin{array}{ll}
y=5^{2 x+4} & \text { Replace } f(x) \text { with ' } y ' \\
x=5^{2 y+4} & \text { exchange ' } x \text { ' and ' } y \text { ' }
\end{array}
$$

$\log _{5} x=2 y+4$
Log is the exponent (remember how to convert between the two?)
$-4+\log _{5} x=2 y \quad$ Solve for ' y '
$\frac{-4+\log _{5} x}{2}=y$

$$
y=-2+1 / 2 \log _{5} x
$$

$$
2^{3} * 2^{2}=2^{5}
$$

The product of powers \rightarrow add the exponents

$$
2^{3} * 2^{2}=2^{5}
$$

Logarithm: another way of writing the exponent
Convert each exponent above into a log:

$$
\begin{gathered}
\log _{2} 8+\log _{2} 4=\log _{2} 32 \\
3+2=5
\end{gathered}
$$

This is the logarithm equivalent of the multiply powers property of exponents.
$\underline{\text { Log of a Product Property }} \quad \log _{2} 15=\log _{2}(3 * 5)$

$$
\begin{aligned}
\log _{2} 15 & =\log _{2} 3+\log _{2} 5 \\
\log _{b}(R S) & =\log _{b} R+\log _{b} S
\end{aligned}
$$

$\underline{\log \text { of a product }}=$ sum of the logs of the factors.

Expand the Logarithm: use properties of logs to rewrite a single log as an expression of separate logs.

$$
\begin{aligned}
& \log _{3} x y \quad \log _{3} x+\log _{3} y \\
& \log _{3} 45 \quad \log _{3} 3+\log _{3} 3+\log _{3} 5 \\
& 45=3 * 3 * 5 \quad 2 \log _{3} 3+\log _{3} 5
\end{aligned}
$$

Expand the Logarithm: use properties of logs to rewrite a single log as an expression of separate logs.

$$
\begin{gathered}
\log \left(3 x y^{2}\right)=\log 3+\log x+\log y^{2} \\
=\log 3+\log x+\log y+\log y \\
=\log 3+\log x+2 \log y \\
\log _{4} 6=\log _{4} 3+\log _{4} 2
\end{gathered}
$$

$$
\ln 2 x y w=\ln 2+\ln x+\ln y+\ln w
$$

Condense the Logarithm: apply properties of logarithms to rewrite the log expression as a single log.
$\log _{2} 7+\log _{2} 5=\log _{2}(7 * 5)=\log _{2} 35$
$\log 5+\log x=\log 5 x$
$\log _{7} 5+\log _{5} 7 \quad$ "unlike logs" \rightarrow can't condense
"Condense the Log"

$$
\begin{aligned}
\log _{5} 2+\log _{5} 7 & =\log _{5} 14 \\
\log 9+\log 4 & =\log 36
\end{aligned}
$$

$\log _{5} 6+\log _{8} 4$
"unlike logs" \rightarrow can't condense
"Expand the Log"

$$
\begin{aligned}
\log _{2} 9 & =\log _{2}(3 * 3) \\
& =\log _{2} 3+\log _{2} 3 \\
& =2 \log _{2} 3
\end{aligned}
$$

Notice something interesting

$$
\log _{2} 9=\log _{2}(3)^{2}=2 \log _{2} 3
$$

"Expand the Product"

$$
\begin{aligned}
\log _{3} 16 & =\log _{3}(4 * 4) \\
& =\log _{3} 4+\log _{3} 4 \\
& =2 \log _{3} 4
\end{aligned}
$$

Notice something interesting

$$
\log _{3} 16=\log _{3}(4)^{2}=2 \log _{3} 4
$$

"Expand the Product"

$\log 10^{2} \quad$ Log of a product is the sum of the logs of the factors.

$=\log _{5} 10+\log _{5} 10 \quad$ Combine "like terms"
$=2 \log _{5} 10$
${ }^{2} \log _{5} 10^{2}=2 \log _{5} 10$
New property: "log of a power"

Use Log of a Power to expand the log

$$
\begin{aligned}
\log x^{3} & =3 \log x \\
\ln 8 & =\ln 2^{3}=3 \ln 2 \\
\log \sqrt{x} & =\log x^{1 / 2}=\frac{1}{2} \log x
\end{aligned}
$$

$\log _{3} x^{2} y^{3} \sqrt[4]{z}=\log _{3} x^{2}+\log _{3} y^{3}+\log _{3} \sqrt[4]{z}$

$$
=2 \log _{3} x+3 \log _{3} y+\frac{1}{4} \log _{3} z
$$

Gotcha'

$$
\begin{aligned}
\log 3 y^{5} & =5 \log 3 y \\
= & =\log 3+\log y^{5}
\end{aligned}
$$

Which one?

$5 \log 3 y=\log (3 y)^{5}=\log 3^{5} y^{5}$

Log of a Power

$c \rightarrow \log _{b} R^{-} \rightarrow c \log _{b} R$
A potential error is this:

$$
\log _{2} 6 x^{3}=3 \log 6 x
$$

What is the error ? ' 3 ' is an exponent of the base ' x ' not ' $6 x$ '
Correct the error.

$$
\begin{aligned}
& \log _{2} 6 x^{3}=\log _{2} 6+\log _{2} x^{3} \\
& =\log _{2} 3+\log _{2} 2+3 \log _{2} x
\end{aligned}
$$

More Practice

1. Convert to a logarithm: $7=2(3)^{x}$

$$
\log _{3}\left(\frac{7}{2}\right)=x
$$

2. Convert to an exponential; $3 \log _{5}(x-6)=6$

$$
(5)^{2}=x-6
$$

3. What is the $\frac{\text { Domain and range? }}{\text { D }} f(x)=3 \log (x+2)-5$

Domain: $(-2, \infty)$
Range: $(-\infty, \infty)$

More Practice

4. What do we mean when we say: "A log is an exponent"? $\log _{5} 25$

This example can be restated as "what exponent of 5 equals 25. $\log _{5} 25=x \quad 5^{x}=25$
Notice something interesting...
Using substitution, replace ' x ' in the second equation with the equivalent expression from the $1^{\text {st }}$ equation.

$$
5^{\log _{5} 25}=25
$$

This is a composition of a function with its inverse \rightarrow they undo each other.

More Practice

5. Simplify: $(3)^{\log _{3} x}=x$

6a. What is the $f(x)=2 \log (2 x-4)-6$
logarand?

$$
\text { logarand }=2 x-4
$$

6b. What is the

$$
x=2
$$

vertical asymptote?

Eq. \#1 $\quad 3^{5}=x$
Convert to log form:
Eq. \#2 $\quad \log _{3} x=5$
Substitute Eq. \#1 into Eq. \#2

$$
\log _{3} 3^{5}=5
$$

When you compose a function with its inverse, they "undo" each other.

Properties of Logarithms: Log of a Product.

$$
\log _{b}(R S)=\log _{b} R+\log _{b} S
$$

$$
\log _{2} 15=\log _{2} 3+\log _{2} 5
$$

log of a product $=$ sum of the logs of the factors.
Logarithm: another way of writing the exponent
Analogous to:
\rightarrow Product of powers
\rightarrow Add the exponents

$$
x^{5} x^{2}=x^{5+2}
$$

Properties of Logarithms Log of a Power

$$
\begin{aligned}
& c^{2} \log _{b} R^{\ominus} \rightarrow c \log _{b} R \\
& \begin{array}{l}
\log _{2} 3^{4} \\
=4 \log _{2} 3 \\
\\
=5 \log 32=\log 2^{5}
\end{array} \\
& \left(x^{5}\right)^{2}=x^{5 * 2}=x^{10} \quad \begin{array}{l}
\text { Logarithm: another way of } \\
\text { writing the } \\
\text { exponent }
\end{array}
\end{aligned}
$$

$$
\frac{x^{5}}{x^{2}}=x^{5} x^{-2}=x^{5-2}
$$

Quotient of powers: subtract denominator exponent from the numerator exponent.
Logarithm: another way of writing the exponent

$$
\begin{aligned}
& \log _{3}\left(\frac{5}{2}\right)=\underset{\text { Negative }}{\log _{3}\left(5 * 2^{-1}\right)}=\underset{\text { Log of of a Product }}{\text { Expont }} \begin{aligned}
\log _{3}(5)+\log _{3}(2)^{-1} \\
\text { Property }
\end{aligned} \\
&=\begin{array}{l}
\text { Property } \\
\log _{3} 5+(-1) \log _{3} 2 \\
\text { Log of a Power }
\end{array} \\
&=\text { Property }^{2} 5 \\
&=\log _{3} 5-\log _{3} 2 \\
& \text { Definition of Subtraction: (adding a } \\
& \text { negative is subtraction) }
\end{aligned}
$$

Log of a Quotient Property

$$
\log _{b}\left(\frac{R}{S}\right)=\log _{b} R-\log _{b} S
$$

$$
\log _{3}\left(\frac{5}{2}\right)
$$

"expand the quotient" $\log _{3} 5-\log _{3} 2$

$\ln 8-\ln 3$
"condense the quotient"

$$
\ln \frac{8}{3}
$$

"Negative Log" \rightarrow denominator of the logarand

Expand the Quotient

$$
\text { 1. } \begin{aligned}
\log \frac{4}{5} & =\log 4-\log 5=\log 2+\log 2-\log 5 \\
& =2 \log 2-\log 5
\end{aligned}
$$

2. $\ln \frac{3}{7}=\ln 3-\ln 7$

Condense the quotient
3. $\log _{4} 5-\log _{4} 2=\log _{4} \frac{5}{2}$
4. $\log _{5} 8-\log _{5} 16=\log _{5} \frac{8}{16}=\log _{5} \frac{1}{2}$

Expand the Logarithm

$$
\text { 5. } \begin{aligned}
\log \left(\frac{2 x}{3 y^{5}}\right) & =\log 2 x-\log 3 y^{5} \begin{array}{c}
\text { The } \\
\text { denominator } \\
\text { is a product! }
\end{array} \\
& =\log 2 x-(\log 3+5 \log y)
\end{aligned}
$$

Distributive property!
$=\log 2 x-\log 3-5 \log y$

$$
=\log 2+\log x-\log 3-5 \log y
$$

Logs of factors in the numerator will be positive.
Logs of factors in the denominator will be negative.

Expand the quotient

$$
\begin{aligned}
& \text { 6. } \log _{4} \frac{2 \sqrt{x}}{4 y z}=\log _{4} 2 \sqrt{x}-\log _{4} 4 y z \\
& =\log _{4} 2+\log _{4} \sqrt{x}-\log _{4} 4-\log _{4} y-\log _{4} z \\
& =\log _{4} 2+\frac{1}{2} \log _{4} x-\log _{4} 4-\log _{4} y-\log _{4} z
\end{aligned}
$$

Change-of-Base Formula for Logarithms
$\log \Omega=\frac{\log _{b}(\text { Change to log base } 10 \text { or base ' } \mathrm{e} \text { ' }}{}$

$$
\overline{\log _{b} \subset}
$$ (your calculator can do these).

Convert to base 10.

$$
\begin{aligned}
& \log _{4} 5=\frac{\log _{10} 5}{\log _{10}(4)}=\frac{0.699}{0.6021}=1.161 \\
& \log _{4} 5=\frac{\ln (5)}{\ln (4)}=\frac{1.609}{1.386}=1.161
\end{aligned}
$$

Simplify

$\log _{2} 2$

$\log _{2} 2=x$
$2^{x}=2$ $x=1$
$5 \log _{3} 27$
$5 \log _{3} 3^{3}$ $(3 * 5) \log _{3} 3$

15

Using Change of base:

$$
\log _{2} 2=\frac{\log 2}{\log 2}=1
$$

Possible Error (which one is true?)

$$
\log \frac{3}{5}=\frac{\log 3}{\log 5} \quad \log \frac{3}{5}=\log 3-\log 5
$$

Simplify:

$\log _{4} 16$

$\log _{4} 4^{2}$
$2 \log _{4} 4$
$2(1)=2$
Or: "4 raised to what power equals 16?"
$\log _{2} \sqrt{2}$
$\log _{2} 2^{1 / 2}$
$1 / 2 \log _{2} 2$
$1 / 2$ (1)

Or: " 2 raised to what exponent equals the square root of 2 ?"

