Math-3
 Lesson 4-3
 Inverse Functions

1. Graph the line: $y=x$
2. Plot the following points using stars

3. Exchange the x and y values in the table

x	y
1	2
2	0

4. Graph the new points using little circles.
5. What do you notice?

Relation: A pairing of input values to output values.

Inverse Relation: A relation that interchanges the input and output values of the original relation.

Relation: $\quad(-2,5),(5,6),(-2,6),(7,6)$

Inverse Relation: $\quad(5,-2),(6,5),(6,-2),(6,7)$

How to find the inverse relation:
Relation: $y=1 / 2 x+2$

1. Exchange ' x ' and ' y ' in the original relation.
2. Solve for 'y' (get 'y' all by itself).

Graph of
$y=2 x-4$
is a reflection of the graph of the line
$y=1 / 2 x+2$ across the line $y=x$.

\[

\]

$$
\begin{aligned}
& 2 x-4=y \\
& y=2 x-4
\end{aligned}
$$

$$
y=1 / 2 x+2
$$

$$
y=2 x-4
$$

Find the inverse of: $f(x)=4 x+2 \quad$ Exchange ' x ' and ' y '

$$
x=4 y+2
$$

This IS the inverse function (written as: "x as a function of y ")
Rewrite it so that it is written as: " y as a function of x ")

$$
x-2=4 y \quad \text { subtract ' } 2 \text { ' (left and right) }
$$

$\underline{x}-\frac{2}{4}=\underline{4 y} \quad$ Divide (all of the) left and right by 4

Reduce the fractions

Rearrange into "slope intercept form"

$$
y=\frac{x}{4}-\frac{1}{2}
$$

This is the inverse of: $y=4 x+2$

Function Notation: "the inverse of $\mathrm{f}(\mathrm{x})$ "

$$
f(x) \quad f^{-1}(x)
$$

$f^{-1}(x)$ means "the inverse of $f(x)$ "
Do not confuse this notation with the negative exponent property:

$$
x^{-1}=\frac{1}{x^{1}}
$$

Negative exponent on a number or an expression means "flip the number" (the reciprocal of the number)"

The inverse of a function means "exchange ' x ' and ' y ' (then solve for ' y ')."

If you have the graph of a relation; how can you tell if the relation is a function?

Vertical Line Test if the line intersects the graph more than once, it is NOT a function.

If you have a graph; how can you tell if the inverse of the graphed function is also a function?

$$
f(x)=x^{2}
$$

Horizontal Line Test: if the line intersects the graph more than once, then the
Inverse of the function is NOT a function.

$$
f(x)=\sqrt{x-2} \quad f^{-1}(x)=?
$$

Exchange ' x ' and ' y ' in the original relation.

$$
x=\sqrt{y-2}
$$

This IS the inverse function (written as: "x as a function of y ")
Rewrite it so that it is written as: " y as a function of x ")
$(x)^{2}=(\sqrt{y-2})^{2} \quad x^{2}=y-2 \quad y=x^{2}+2$

Why do we only graph the right side of the parabola?
Since the $x-y$ pairs of SQRT are all positive, then the $x-y$ pairs of the inverse of the SQRT (square function) will be positive.

Find the inverse of: $\quad f(x)=x^{3}-3$ Exchange ' x ' and ' y '
$x=y^{3}-3 \quad$ This $\underline{I S}$ the inverse function, but it is written in the form " x as a function of y "
Rewrite it so that it is written as: " y as a function of x ")

$$
x+3=y^{3} \quad \text { Add ' } 3 \text { ' (left and right) }
$$

$$
\sqrt[3]{x+3}=\sqrt[3]{y^{3}} \quad \text { cubed root both sides }
$$

$$
\sqrt[3]{x+3}=y
$$

Simplify
$f^{-1}(x)=\sqrt[3]{x+3}$
Is the inverse of: $f(x)=x^{3}-3$

The temperature of a bowl of soup is 100 degrees.

Function A: heating by 10 degrees
Function B: cooling by 10 degrees

The temperature of a bowl of soup is 100 degrees. Apply function A then function B (in sequence) to the bowl of soup. What is the final temperature of the soup?

Temperature $=100+10-10$

Composition of inverse functions
Function A and Function B are inverses of each other.

Function A: "does something" to the input.

Function B: "undoes whatever function A did to the input.
27
Function A "does something" to input value 2

Function B "undoes (whatever A did) to the input value 2

What is the output of function B?

$$
\begin{aligned}
& f(x)=(x+1)^{2 / 3} \quad f^{-1}(x)=? \\
& x=(y+1)^{2 / 3} \\
& x^{3 / 2}=\left((y+1)^{2 / 3}\right)^{3 / 2} \\
& x^{3 / 2}=y+1 \\
& y=x^{3 / 2}-1
\end{aligned}
$$

What is the inverse function?

1. $f(x)=\left\{x^{4}, x=[0, \infty)\right\} \quad f^{-1}(x)=\sqrt[4]{x}$
2. $g(x)=x^{2 / 3}$

$$
g^{-1}(x)=x^{3 / 2}
$$

3. $h(x)=x^{4 / 5}$
$h^{-1}(x)=? \quad=x^{5 / 4}$
4. $k(x)=x^{5} \quad k^{-1}(x)=?=x^{1 / 5}=\sqrt[5]{x}$

Identify the pairs that cannot be inverses. Why can't they be inverses?

1. $y=x^{4}-3 \quad y=\sqrt[4]{x+3}$
2.

$$
y=(x-5)^{2 / 3} \quad y=x^{3 / 2}+5
$$

3.

$$
y=(x+6)^{4 / 5}
$$

$$
y=x^{5 / 4}+5
$$

$$
\text { 4. } y=(x+2)^{5}-3
$$

$$
y=(x+3)^{1 / 4}-2
$$

Are $f(x)$ and $g(x)$ inverses of each other ?

$$
g(x)=\frac{x+1}{4} \quad f(x)=4 x-1
$$

Are $f(x)$ and $g(x)$ inverses of each other ?

$$
g(x)=\frac{(x-1)^{2}}{5}
$$

$$
f(x)=1+\sqrt{5 x}
$$

$$
f(x)=\frac{2}{x-3}+4 \quad f^{-1}(x)=?
$$

$$
x=\frac{2}{y-3}+4
$$

$$
y-3=\frac{2}{(x-4)}
$$

$$
x-4=\frac{2}{y-3}
$$

$$
y=\frac{2}{(x-4)}+3
$$

$$
(y-3)(x-4)=2
$$

$$
\begin{array}{ll}
f(x)=\frac{3 x}{x+1}+6 & f^{-1}(x)=? \\
x=\frac{3 y}{y+1}+6 & x y-6 y+x-6=3 y \\
x-6=\frac{3 y}{y+1} & x y-6 y-3 y=-x+6 \\
x y-9 y=-x+6 \\
(y+1)(x-6)=3 y & y(x-9)=-x+6 \\
\text { multiply this out! } & y=\frac{-x+6}{(x-9)}
\end{array}
$$

We use compositions of inverse functions to solve equations.

$$
\begin{array}{cl}
(x-3)^{2}+4=40 & \text { "Isolate the square, undo } \\
-4 \quad-4 & \text { the square". } \\
(x-3)^{2}=36 & \\
\sqrt[2]{(x-3)^{2}}=\sqrt{36} & \begin{array}{l}
\text { "indo the square" means } \\
\text { "inverse function" of the square }
\end{array} \\
x-3= \pm 6 & \\
x=3+6=9 & \\
x=3-6=-3 &
\end{array}
$$

Solve the following equation
$23=3 x^{3}-1$ Isolate the power:

$$
24=3 x^{3}
$$

$8=x^{3} \quad$ undo the power
$\sqrt[3]{8}=\sqrt[3]{x^{3}}$
$2=x$

Solve

$$
\begin{array}{ll}
13=x^{4}-3 & \text { Solve } \sqrt{2 x+1}=3 \\
16=x^{4} & (\sqrt{2 x+1})^{2}=3^{2} \\
\pm \sqrt[4]{16}=x & 2 x+1=9 \\
x= \pm 2 & 2 x=8 \\
& x=4
\end{array}
$$

Solve:

Check your solution.
$\sqrt{x+3}+5=0$
$\sqrt{22+3}+5=0$
$\sqrt{x+3}=-5$

$$
\sqrt{25}+5=0
$$

$x+3=25$

$$
5+5 \neq 0
$$

$$
\begin{gathered}
x=22 \\
\sqrt{2-x}=-x \\
2-x=(-x)^{2} \\
2-x=x^{2} \\
0=x^{2}+x-2 \\
0=(x+2)(x-1)
\end{gathered}
$$

$x=-2,1 \quad$ Check your solutions.
$\sqrt{2-(-2)}=-(-2)$
$\sqrt{4}=2 \quad$ Checks.
$\sqrt{2-(1)}=-(1)$
Extraneous solution.
$\sqrt{1} \neq-1 \quad$ Extraneous solution.
$x=-2$
$x \neq 1$

