Math-3
 Lesson 3-9
 Applications of Rational Functions

What you should know at the end of the lesson:

1) What a quantity is.
2) What a rate is.
3) How to use ratios of quantities to come up with new quantities.
4) How slopes of the graphs relating two different quantities can become a new quantities.
5) How to use rates to solve work problems and concentration problems.

Handout:

Pair up with your neighbor and collaborate to answer questions \#1 through \#4.

Quantities and their Units

Quantity	Unit of Measure
Height	Inches, feet, miles, etc.
Weight	Pounds, ounces, kilograms, grams
Temperature	Degrees F, Degrees C, Degrees K
Volume	Gallons, cubic feet, cups
Length	Meters, kilometers, millimeters
Energy	Joules, watts

New Quantities from Ratios of Quantities

Quantity	Ratio of:	Unit of Measure
"unit price"	Cost/weight	\$/lbm (dollars "per" pound)
Speed	Distance/time	Mile/hr (mile "per" hr) Ft/sec (ft "per" sec)
Fuel efficiency	Distance/volume gas used	Miles/gallon (mph) (miles "per" gallon)

When you see the word "per", what type of quantity is it?
Continue working to complete problems \#5 thru \#7

What is your ratio of quantities for this situation? What are the units?
A vendor at a state fair is inflating a helium balloon.
"time rate of change of volume" $\frac{\Delta v o l u m e}{\Delta t i m e} \rightarrow \frac{\mathrm{in}^{3}}{\sec } \quad$ "fill rate"
or
"the change in volume with respect to (the change in) time"

An employee cutting a large patch of grass.
"time rate of change of area (of cut grass)" $\frac{\Delta \operatorname{area}}{\Delta t i m e} \rightarrow \frac{f t^{2}}{m i n} \quad$ "Cutting rate"
or
"the change in cut area with respect to (the change in) time."

A painter is painting a room.
"time rate of change of painted area $\frac{\Delta a r e a}{\Delta t i m e} \rightarrow \frac{f t^{2}}{\min } \quad$ "Painting rate"
or
"the change in painted area with respect to (the change in) time."

Quantity?
Fill rate

Quantity? pay rate cost rate

Can rates be added?

Running away from your mother (at 6 mph) on a stationary train. How fast are you going relative to your mother?

```
mph
```


Sitting on a train going 6 mph. How fast are you going relative to your mother?

```
mph
```


Running away from your mother (at 6 mph) on a train that is also going 6 mph . How fast are you going relative to your mother?

Can rates be added? YES!

$$
\text { Rate }_{\text {you }}+\text { Rate }_{\text {train }}=\text { Rate }_{\text {you } \& \text { train }}
$$

Jose takes 3 hours to clean a house
(time rate of cleaning: one house per 3 hours \rightarrow Rate $_{\text {Jose }}=\frac{1 \text { house }}{3 \text { hours }}$
George takes 4 hours to clean a house (time rate of cleaning: one Job per 4 hours \rightarrow Rate $_{\text {George }}=\frac{1 \text { house }}{4 \text { hours }}$

How Long for both to clean one house by working together?

Rate George + Rate Jose = Combined Rate (George \& Jose) Rate $_{G}+$ Rate $_{J}=$ Rate $_{G+J}$

$$
\frac{1 \text { house }}{4 \text { hrs }}+\frac{1 \text { house }}{3 \text { hours }}=\frac{1 \text { house }}{t \text { hours }} \quad \frac{1}{4}+\frac{1}{3}=\frac{1}{t} \quad \text { Multiply by the common denominator }
$$

$$
\frac{12 t}{4}+\frac{12 t}{3}=\frac{12 t}{t} \quad \text { simplify } \quad 3 t+4 t=12 \quad 7 t=12 \quad t=12 / 7
$$

$$
t=1.7 \mathrm{hrs}
$$

James, Adam and Paul can paint a room together in 2 hours. If Adam does the job alone he can paint the room in 5 hours. If Paul works alone, he can paint the room in 6 hours. If James works alone, how long would it take him to paint the room?

$$
\begin{aligned}
& \operatorname{rate}_{\text {Pria, Jamie, Paul }}=\frac{\text { room }}{2 \mathrm{hrs}}=\frac{\text { room }}{5 \mathrm{hrs}}+\frac{\text { room }}{6 \mathrm{hrs}}+\frac{\text { room }}{\mathrm{"t} \mathrm{thrs}} \\
& \text { rate }_{\text {Pria }}=\frac{\text { room }}{5 \mathrm{hrs}} \quad \frac{\text { room }}{2 \mathrm{hrs}}=\frac{\text { room }}{5 \mathrm{hrs}}+\frac{\text { room }}{6 \mathrm{hrs}}+\frac{\text { room }}{\mathrm{nt"} \mathrm{hrs}} \\
& \operatorname{rate}_{\text {Paul }}=\frac{\text { room }}{6 \mathrm{hrs}} \quad \frac{1}{2}=\frac{1}{5}+\frac{1}{6}+\frac{1}{\mathrm{t}} \quad 5 t=2 t+\frac{10 t}{6}+\frac{10}{1} \\
& \frac{t}{2}=\frac{t}{5}+\frac{t}{6}+\frac{1}{1} \quad 30 t=12 t+10 t+60 \\
& t=\frac{2 t}{5}+\frac{2 t}{6}+\frac{2}{1} \quad 8 t=60 \quad t=7.5 \mathrm{hrs}
\end{aligned}
$$

How would you describe "percent"?

$$
\text { grade }=\frac{\text { points earned }}{\text { total points }} \quad \%=\frac{\text { partial amount }}{\text { total amount }}
$$

In Chemistry, what does the "concentration" mean?

$$
\text { concentration }(\%)=\frac{\text { volume of a specific chemical }}{\text { total volume }}
$$

Mixture Problem: mixtures of various concentrations of solutions.
30 ml . of a 20% saline (salt/water) solution is mixed with 50 ml . of a 60% saline solution What is the concentration of the mixture?
$\%$ concentration ${ }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { volume }_{\text {pure }}}{\text { volume }_{\text {total }}}$

30 ml

$30(0.2)=6 \mathrm{ml}$

50 ml
50(0.6) $=30 \mathrm{ml}$

$$
\begin{aligned}
& 30 \mathrm{ml}+50 \mathrm{ml} \\
& =80 \mathrm{ml} \\
& 6 \mathrm{ml} \\
& 30 \mathrm{ml}
\end{aligned}=36 \mathrm{ml}
$$

$$
x \%=\frac{36 m l}{80 m l}=0.45=45 \%
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. 30 ml . of a 20% saline (salt/water) solution is mixed with 50 ml . of a 60% saline solution. What is the concentration of the mixture?
$\%$ concentration $_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { weight }_{\text {pure }}}{\text { weight }_{\text {total }}}$

	A	B	$A \& B$
Part	6 ml	30 ml	36 ml
Whole	30 ml	50 ml	80 ml
$\%$	0.2	0.6	0.45

$$
\begin{aligned}
20 \% & =0.2=\frac{x}{30 m l}
\end{aligned} \quad 60 \%=0.60=\frac{x}{50 m l}, ~ x=30 \mathrm{ml} \text { (salt) }
$$

Add the column values to get the total

$$
\% \text { pure }=\frac{36}{80}=0.45=45 \%
$$

You cannot add percents!
You must calculate the percent concentration.

5 gallons of a 20% acid mixture was added to 10 gallons of an unknown mixture. The resulting mixture concentration was 26.7%. What was the concentration of the 10 gallon mixture?

\% concentration			
	A	B	A \& B
Part	1 gal	$10 x$ gal	$1+10 x$
Whole	5 gal	10 gal	15 gal
$\%$	0.2	x	0.267

Add the column values to get the total You cannot add percents! You must calculate the percent concentration.

$$
\begin{aligned}
& 5(0.2)=1 \mathrm{gal} \\
& 26.7 \%=0.267=\frac{1+10 x}{15} \\
& 0.267(15)=1+10 x
\end{aligned}
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. 75 ml . of a 30% saline (salt/water) solution is mixed with 65 ml . of a 45% saline solution. What is the concentration of the mixture?
$\%$ concentrat ion $_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { weight }_{\text {pure }}}{\text { weight }_{\text {total }}}$

	A	B	A \& B
Part	22.5 ml	29.25 ml	$\mathbf{5 1 . 7 5 \mathrm { ml }}$
Whole	75 ml	65 ml	140 ml
$\%$	0.3	0.45	0.3693

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. How much of a 40% saline (salt/water) solution must be mixed with 35 ml . of a 25% saline solution to get a solution with 30% concentration?

$$
\% \text { concentration }_{\mathrm{pure}}=\frac{\text { part }}{\text { whole }^{\text {weight }_{\mathrm{total}}}}=\frac{\text { eight }_{\mathrm{pure}}}{}
$$

	A	B	$A \& B$
Part	$0.4 \times \mathrm{ml}$	8.75 ml	$0.4 \mathrm{x}+8.75 \mathrm{ml}$
Whole	x ml	35 ml	$\mathrm{x}+35 \mathrm{ml}$
$\%$	0.4	0.25	0.3

$$
\begin{array}{cl}
0.3=\frac{0.4 x+8.75}{x+35} & 0.3 x+10.5=0.4 x+8.75 \\
& 1.75=0.1 x \\
0.3(x+35)=0.4 x+8.75 & 17.5=x
\end{array}
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. How much of a pure (100%) grape juice must be added to 2 quarts of 35% grape juice mixture to yield 65\% grape juice mixture?

$$
\% \text { concentration }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { weight }_{\text {pure }}}{\text { weight }_{\text {total }}}
$$

	A	B	A \& B
Part	x qt	0.7 qt	$x+0.7 q t$
Whole	x qt	2 qt	$x+2 q t$
$\%$	1	0.35	0.65

$$
\begin{array}{cc}
0.65=\frac{x+0.7}{x+2} & 0.65 x+1.3=x+0.7 \\
0.65(x+2)=x+0.7 & 1.71=x
\end{array}
$$

$$
\% \text { concentration }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\mathrm{Vol}_{\text {pure }}}{\mathrm{Vol}_{\text {mixture }}}
$$

3 gallons of an unknown mixture concentration was added to 4 gallons of a 15% acid mixture. The resulting mixture concentration was 20.5%. What was the concentration of the 3 gallon mixture?

	A	B	$A \& B$
Part	$3 x$ gal	0.6 gal	$3 x+0.6$ gal
Whole	3 gal	4 gal	7 gal
$\%$	x	0.15	0.205

$0.205=\frac{3 x+0.6}{7}$
$0.8353=3 x$

$$
1.4353=3 x+0.6 \quad 0.2783=x
$$

Metal Alloy: a mixture of different metals. For example "rose gold" is a mixture of copper (reddish color) with gold (yellow color). "Yellow gold" is a mixture of silver and gold. The purity of gold alloy is measured in "carats".
The a pure substance is mixed with a "filler" we call the ratio of the pure substance to the total amount the concentration.

carats	\% Gold
24	100
18	75
12	50
6	25

$$
\% \text { concentration }_{\text {gold }}=\frac{\text { part }_{\text {gold }}}{\text { whole }_{\text {mixture }}}=\frac{\text { weight }_{\text {gold }}}{\text { weight }_{\text {total }}}
$$

