Math-3 Lesson 3-5 The Reciprocal Function

Why is there a vertical asymptote?

What is the output when we "approach" x = 0 from the "+" side?

Horizontal Asymptote: An <u>end-behavior</u> that is a <u>horizontal</u> line that the graph <u>approaches</u> but <u>NEVER</u> reaches.

Asymptotes are <u>not part of the</u> <u>graph</u> but you can see them easily. We show them as dotted lines.

<u>Vertical Asymptote</u>: (a <u>vertical</u> line the graph approaches but never reaches) is caused by a zero of the denominator that <u>does NOT disappear due to simplification.</u>

Oblique (Slant) Asymptote: We'll learn about how that happens in our next lesson.

<u>Asymptotic Behavior</u>: the graph must clearly show the graph approaching but never reaching the graph.

Fractions and the number zero. $y = \frac{1}{x}$ Can the denominator a fraction equal to zero? $0 = \frac{1}{x} \rightarrow 0 * x = \frac{1}{x} * x \rightarrow 0 = 1$

There is <u>no solution</u> to this equation \rightarrow the denominator can <u>never</u> make a fraction equal to zero.

What part of the fraction makes it equal to zero? $y = \frac{1}{x}$

$$0 = \frac{m}{x} \rightarrow 0 * x = \frac{m}{x} * x \rightarrow 0 = m$$

Only the a zero of the numerator $\frac{0}{3}$

Fractions and the number zero.

$$y = \frac{1}{x}$$

Division by zero is not a number.

 \rightarrow Vertical asymptote: x = 0.

Only the a zero of the numerator can make a fraction equal zero.

Is there any input value for 'x' that will make the numerator = 0?

The output value "y" of this function will <u>never</u> equal zero.

→ Horizontal asymptote: y = 0.

Generalized Transformations of the Square Function:

$$y = -2(x - 3)^2 + 4$$

Reflected (x-axis), VSF=2, right 3, up 4

Vertex:
$$(3, 4)$$

Reciprocal Function General Transformation Equation

(h, k) The point of intersection of the vertical and horizontal asymptotes.

Domain : $x \neq h$ *Range* : $y \neq k$

- a) Describe the transformations of the reciprocal function.
- b) What is the intersection of the asymptotes?
- c) What is the horizontal asymptote?
- d) What is the vertical asymptote?
- e) What is the domain?
- f) What is the range?

$$g(x) = \frac{1}{x} + 7$$

(a) Up 7 (b) (0, 7) (c) x = 0(d) y = 7(e) $x \neq 0$ (f) $y \neq 7$

$$f(x) = \frac{-3}{(x+3)} - 5$$

(a) Reflect (x-axis), left 3, down 5 (a) (-3, -5) (b) x = -3(c) y = -5(d) $x \neq -3$ (e) $y \neq -5$ What is the equation of the graph?

What is the equation of the graph?

Another way to understand the horizontal asymptote:

(Remember from Math-2), right end behavior is given by:

$$g(x) = \frac{1}{x} + 3 \qquad x \to \infty, \ g(x) \to ? \qquad g(x) = \frac{1}{x} + 3$$
$$x \to \infty, \ g(x) \to 3$$

 \frown

Horizontal/Oblique Asymptote: the quotient when you divide.

<u>Horizontal/Oblique Asymptote</u>: y = 2

