Math-3

Unit 2 Weak Areas (Part 2)

"Nice" 3rd Degree Polynomial (with no constant term)

$$
y=3 x^{3}+12 x^{2}-36 x
$$

It has no constant term so it can easily be factored into ' x ' times a quadratic factor.

$$
y=3 x\left(x^{2}+4 x-12\right)
$$

If the quadratic factor is "nice" we can factor that into 2 binomials.

$$
\begin{gathered}
y=3 x(x+6)(x-2) \\
x=0, \quad-6, \quad 2
\end{gathered}
$$

This is now "intercept form" so we can "read off" the x-intercepts. What are they?

Find the Zeroes

$$
y=x^{3}-6 x^{2}-16 x
$$

$$
y=x^{3}+4 x^{2}-12 x
$$

$$
y=2 x^{3}-6 x^{2}-30 x
$$

"Nice" 3 ${ }^{\text {rd }}$ Degree Polynomial (with no constant term)

$$
\begin{aligned}
& y=x^{3}+6 x^{2}+4 x+0 \\
& 0=x^{3}+6 x^{2}+4 x
\end{aligned}
$$

It has no constant term so it can easily be factored into ' x ' times a quadratic factor. $0=x\left(x^{2}+6 x+4\right.$

$$
x=0
$$

What if the quadratic factor is not factorable?

$$
\begin{array}{cr}
x=\frac{-b}{2 a}=\frac{-(6)}{2(1)} & 0=(x+3)^{2}-5 \\
x=-3 & x=-3 \pm \sqrt{5}
\end{array}
$$

Convert the quadratic factor into vertex form and solve.

$$
y=f(-3)=(-3)^{2}+6(-3)+4
$$

$$
y=-5
$$

Zeroes:

$$
x=0,-3 \pm \sqrt{5}
$$

Find the zeroes using "box factoring"

$$
\begin{gathered}
y=4 x^{3}-5 x^{2}+12 x-15 \\
0=\left(x^{2}+3\right)(4 x-5) \\
0=x^{2}+3 \quad 4 x-5=0 \\
-3=x^{2} \quad 4 x=5 \\
x= \pm i \sqrt{3} \quad x=5 / 4 \\
x=\mathrm{i} \sqrt{3},-\mathrm{i} \sqrt{3}, 5 / 4
\end{gathered}
$$

Find the zeroes using "box factoring"

$$
\begin{gathered}
y=2 x^{3}+3 x^{2}+4 x+6 \\
x=
\end{gathered}
$$

$$
y=4 x^{3}+8 x^{2}+5 x+10
$$

$$
x=
$$

$$
\begin{gathered}
y=-6 x^{3}+7 x^{2}-18 x+21 \begin{array}{l|l|l|}
\hline & & \\
\hline & & \\
\hline x= & & \\
\hline
\end{array}{ }^{2}= \\
\hline
\end{gathered}
$$

How do we find zeroes of "hard-to-factor" polynomials?
The Factor Theorem If a polynomial $f(x)$ is divided by $(x-k)$, and the remainder is " 0 ," then $(x-k)$ is a factor of the original polynomial and the zero of $(x-k)$ is a zero of the polynomial.

$$
\begin{array}{r}
x+4 \begin{array}{r}
x+1 \\
\frac{-\left(x^{2}+4 x\right)}{x^{2}+5 x+4} \\
\hline-\binom{x+4}{x+4}
\end{array}
\end{array}
$$

The remainder =0 0

Polynomial Long Division

$\frac{\left(x^{2}\right)}{\left(x^{3}\right)+3 x^{2}+14 x-18}$

1) Look at left-most numbers
2) What \# times "left" = "left"?
3) Multiply
4) Subtract

Polynomial Long Division
$x - 1 \longdiv { x ^ { 2 } } \quad$ 4) Subtract
$-\left(x^{3}-x^{2}\right)$
Careful with the negatives!
$4 x^{2}+14 x-18 \quad$ 5) Bring down.

Polynomial Long Division

\[

\]

6) Repeat steps 1-5.
7) Look at leftmost numbers
8) What \# times "left" = "left"?
$18 x$
9) Multiply
10) Subtract

Careful of the negatives!

Polynomial Long Division

$$
x-1 \begin{gathered}
\begin{array}{c}
x^{2}+4 x \\
x^{3}+3 x^{2}+14 x-18 \\
-\left(x^{3}-x^{2}\right)
\end{array} \\
\begin{array}{r}
4 x^{2}+14 x-18 \\
-\left(4 x^{2}-4 x\right)
\end{array} \\
\hline 18 x-18
\end{gathered}
$$

5) Bring down.

Polynomial Long Division

$$
(x) - 1 \longdiv { x ^ { 3 } + 4 x + 1 8 }
$$

$$
-\left(x^{3}-x^{2}\right)
$$

$$
\begin{array}{r}
4 x^{2}+14 x-18 \\
-\left(4 x^{2}-4 x\right) \\
\hline(18 x)-18 \\
-(18 x-18) \\
0
\end{array}
$$

6) Repeat steps 1-5.
7) Look at leftmost numbers
8) What \# times "left" = "left"?
9) Multiply
10) Subtract

$$
\begin{gathered}
x-1 \begin{array}{l}
\frac{x^{2}+4 x-18}{x^{3}+3 x^{2}+14 x-18} \\
\frac{-\left(x^{3}-x^{2}\right)}{4 x^{2}+14 x-18} \\
\frac{-\left(4 x^{2}-4 x\right)}{18 x-18} \\
\frac{-(18 x-18)}{0}
\end{array} \\
x^{3}+3 x^{2}+14 x-18=(x-1)\left(x^{2}+4 x-18\right)
\end{gathered}
$$

How do we find the zeroes of the unfactorable quadratic factor?
Convert to vertex form and take square roots.

Is there an easier way to do this? Yes!

$1^{\text {st }}$ step: Write the polynomial with only its coefficients. $2^{\text {nd }}$ step: Write the "zero" of the linear factor.

3rd step: add down

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$4^{\text {th }}$ step: Multiply the "zero" by the lead coefficient.
5th step: Write the product under the next term to the right. $6^{\text {th }}$ step: add the second column downward

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$7^{\text {th }}$ step: Multiply the "zero" by the second number 8th step: Write the product under the next term to the right. $9^{\text {th }}$ step: add the next column downward

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$10^{\text {th }}$ step: Multiply the "zero" by the 3rd number
11th step: Write the product under the next term to the right
$12^{\text {th }}$ step: add the next column downward

\[

\]

Because the remainder $=0$, then $(x-1)$ is a factor AND $x=1$ is a zero of the original polynomial!

$$
y=x^{3}+8 \quad y=x^{3}+0 x^{2}+0 x+8
$$

Use Division to Factor:
Find the $1^{\text {st }}$ zero.

$$
\begin{gathered}
0=x^{3}+8 \\
-8=x^{3} \\
-2=x
\end{gathered}
$$

\rightarrow Comes from the
factor ($\mathrm{x}+2$)

$$
y=(x+2)\left(x^{2}-2 x+4\right)
$$

Find the Zeroes of the Difference of cubes:

$$
y=x^{3}-64
$$

$$
y=x^{3}+125
$$

Difference of Squares (of higher degree):

$$
y=x^{4}-81 \quad y=x^{4}+0 x^{3} 0 x^{2}+0 x-81
$$

Find the $1^{\text {st }}$ zero.
$0=x^{4}-81$

$$
\begin{gathered}
81=x^{4} \\
3=x
\end{gathered}
$$

\rightarrow Comes from the
factor ($x-3$)

$$
\begin{gathered}
y=(x-3)\left(x^{3}+3 x^{2}+9 x+27\right) \\
\rightarrow \text { Try to box-factor the } \\
3^{\text {rd }} \text { degree polynomial. }
\end{gathered}
$$

"Quadratic Form": a trinomial that looks like a quadratic but has a larger degree.

$$
y=x^{4}+3 x^{2}+2 \quad \text { Looks like } \rightarrow \quad y=m^{2}+3 m^{1}+2
$$

Factors similarly

$$
y=\left(x^{2}+2\right)\left(x^{2}+1\right) \quad y=(m+2)(m+1)
$$

BUT, according to the Linear Factorization Theorem, it factors into 4 linear factors.

$$
y=(x+i \sqrt{2})(x-i \sqrt{2})(x+i)(x-i)
$$

Zeroes: $\quad x=i \sqrt{2},-i \sqrt{2}, i,-i$

Find the zeroes

$$
\begin{gathered}
y=x^{4}-16 x^{2}+28 \\
y=\left(x^{2}-14\right)\left(x^{2}-2\right)
\end{gathered}
$$

$$
y=(x+\sqrt{14})(x-\sqrt{14})(x+\sqrt{2})(x-\sqrt{2})
$$

Zeroes: $\quad x=\sqrt{14},-\sqrt{14}, \sqrt{2},-\sqrt{2}$
$y=16 x^{4}-81$
$y=\left(4 x^{2}-9\right)\left(4 x^{2}+9\right)$
$y=(2 x-3)(2 x+3)(2 x-3 i)(2 x+3 i)$

$$
x=\frac{3}{2},-\frac{3}{2}, \frac{3 i}{2},-\frac{3 i}{2}
$$

