Math-3
 Lesson 3-1
 Unit 1 and 2 Weak Area Review (Part 1)

A way to define the shaded region of a number line.

$$
x=(-\infty, 5]
$$

Describe the shaded region using interval notation.

$$
x=(11, \infty)
$$

What "name" would give the number ' 11 ' above?

$$
x=[-1,2)
$$

What "name" would give the numbers ' -1 ' and ' +2 ' above?

Critical value: a number(s) on a number line that separates the number line into separate intervals.

Critical value: a boundary number that separates the number line into separate intervals.

$$
x=(3,6]
$$

$$
x=[-1, \infty)
$$

What is the significance of the "[", "]" , "(" , ")" symbols?
"[" means the left-side "critical value" is included in the interval.
"(" means the left-side "critical value" is NOT included in the interval.
"]" means the right-side "critical value" is included in the interval.
")" means the right-side "critical value "is NOT included in the interval.

Graph the two intervals shown above.

Which of the following is not a correct example of Interval Notation?
a) $x=(-\infty, 5]$

$$
\text { (b) } x=[-3, \infty]
$$

b) " ∞ " is not a "number" so it can never be "included" in the interval.
c) $x=[-2,4)$
(d) $x=(5,-\infty)$
d) "- ∞ " is on the left end of a number line so it must be the left-side number in interval notation..

Graph the critical values defined by:

$$
x=(-\infty,-3] \cup(-1,2) \cup[5, \infty)
$$

Shade the intervals defined by: $\quad \mathrm{X}=(-\infty,-3] \cup(-1,2) \cup[5, \infty)$

Define what it means to say: "The graph is increasing."
\rightarrow From left to right it goes upward.
\rightarrow Positively sloped.

Define what it means to say:
"The graph is increasing at a specific location, for example at $(x, y)=(3,0)$."

A line that is tangent to the graph at the point $(3,0)$ has a positive slope.

Starting from the left side; draw a graph that is:

1) decreasing until $x=0$, then increasing

Is the graph increasing or decreasing at $x=0$?

Neither increasing nor decreasing
2) Increasing until $x=2$, then decreasing

Is the graph increãsing or decreasing at $x=2$?

Neither

Starting from the left side; draw a graph that is:
\uparrow until $x=-3$, \downarrow until $x=2$, then \uparrow

Is the graph increasing or decreasing at $x=-3$ or $x=2$?

Neither increasing nor decreasing

Why not?
\downarrow until $x=-3, \uparrow$ until $x=0$,
\downarrow until $x=3$, then \uparrow

Is the graph Increasing or decreasing at $x=-3$, $x=0$, or $x=3$?

Neither
Why not?

Using Interval Notation, where is the graph:

Increasing?

$$
f(x) \uparrow \text { on } x=(0, \infty)
$$

Increasing?

Using Interval Notation, where is the graph:

Increasing?

$$
f(x) \uparrow \text { on } x=(-\infty, 3) \cup(2, \infty)
$$

Increasing?

$$
f(x) \uparrow \text { on } x=(-3,0) \cup(3, \infty)
$$

Define what it means to say: "The portion of the graph that is positive."
\rightarrow The part of the graph above the x-axis.
\rightarrow All $x-y$ pairs whose y-values are positive.
Shade the input values
whose corresponding output values are positive.

Define the shaded region using interval notation.

Where is the function positive?

$$
f(x)>0 \text { on } x=(-5,0) \cup(4, \infty)
$$

Where is the function negative?

$f(x)<0$ on $x=(-4,-1) \cup(1,4)$

What does the "multiplicity" of a "zero" refer to?
The number of times the same zero occurs from separate and distinct linear factors of the polynomial.

$$
y=(x-1)^{2}=(x-1)(x-1)
$$

What are the zeroes? $\quad 0=(x-1)(x-1) \rightarrow \mathrm{x}-1=0$
$\mathrm{x}=1$ is a "zero" from 2 separate and distinct linear factors
Zeroes: "x = 1 with multiplicity 2"
State the Fundamental Theorem of Algebra: If a polynomial has a degree of " n ", then the polynomial has " n " zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$
\begin{aligned}
& y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48 \quad \text { "4 th Degree" } \rightarrow 4 \text { zeroes } \\
& y=x^{4}-5 x^{2}+4 \quad \text { "4th Degree" } \rightarrow 4 \text { zeroes }
\end{aligned}
$$

What is the relationship between the sign of the lead coefficient and degree of the polynomial and the end behavior of the graph?

Positive Lead coefficient and Odd degree: $\quad \downarrow$ left and \uparrow right

Positive Lead coefficient and even degree: $\quad \uparrow$ left and \uparrow right
Negative lead coefficient: (reflection across x-axis) switches to opposite end behavior

$$
y=x^{3}
$$

$$
y=2 x^{5}
$$

$$
y=3 x^{7}
$$

$$
y=-x^{3}
$$

$$
y=-2 x^{5}
$$

$$
y=-3 x^{7}
$$

$$
\begin{gathered}
y=x^{2} \\
y=6 x^{4} \\
y=9 x^{6}
\end{gathered}
$$

$$
y=-x^{2}
$$

$$
y=-6 x^{4}
$$

$$
y=-9 x^{6}
$$

What is the relationship between multiplicity and whether the graph crosses or kisses the real-number zero of the polynomial?

Odd multiplicity:

Crosses x-axis at the zero.

Even multiplicity: "kisses" x-axis at the zero.

$$
\begin{gathered}
y=(x+2)^{2} \\
y=6(x+2)^{4} \\
y=9(x+2)^{6}
\end{gathered}
$$

Zeroes:
$x=-2$ mult. 2
$x=-2$ mult. 4
$x=-2$ mult. 6

Graph the polynomial $f(x)=x(x+1)(x-1)(x-2)$
" 4 th Degree" $\rightarrow 4$ zeroes \quad Zeroes: $x=-1,0,1$, and 2 .
Sign (lead coefficient) and degree: (+) even
The end behavior is up right, up left ?

All zeroes occur once \rightarrow Odd multiplicity: Graph crosses x-axis at the zero.

Graph the polynomial $f(x)=2(x+1)^{2}(x+3)(x-4)$
"4th Degree" $\rightarrow 4$ zeroes \quad Zeroes: $\mathrm{x}=-3,-1$ mult. 2, and 4.
Sign (lead coefficient) and degree: (+) even
The end behavior is up right, up left ?
$x=-1$ has an even multiplicity: Graph kisses x-axis at the zero.

Find the errors in the graph of: $f(x)=-2 x^{2}(x-3)^{2}(x+1)(x-5)$

" 6 th Degree" $\rightarrow 6$ zeroes Zeroes: $x=-1,0$ (mult. 2), 3 (mult. 2), and 5 .
Error \#1: Did not graph $\mathrm{x}=0$ (mult. 2)
Error \#2: Did not "kiss" at x = 3 (mult. 2)
Sign (lead coefficient) and degree:
(-) even \downarrow left and \downarrow right
Error \#3: Wrong end behavior.
$\left.\begin{array}{|c|c|c|c|c|}\hline x & (0 \\ y & -2\end{array}\right)\binom{2}{5}$

$$
\begin{array}{ll}
y=m(0)-2 & y=m x-2 \\
5=m(2)-2 & m=\frac{5-2}{2}=\frac{3}{2}
\end{array} \quad y=\frac{3}{2} x+4
$$

Write the equation of the line that passes through the data for each table. $y=m x+b$

$$
m=\frac{\Delta y}{\Delta x}=\frac{-11}{-2}=\frac{11}{2} \quad y=\frac{11}{2} x+b
$$

$\left.\begin{array}{cl}\text { Substitution: }(\mathrm{x}, \mathrm{y})=(-5,-6) & \begin{array}{l}-6 \\ = \\ \text { Simplify right side }\end{array}-6= \\ & =\frac{-11}{2}(-5)+b\end{array}\right)$

$$
\text { Add } \frac{55}{2} \text { left/right of "=" } \quad-6+\frac{55}{2}=b
$$

$$
\text { Simplify left side } \quad \frac{43}{2}=b \quad y=\frac{11}{2} x+\frac{43}{2}
$$

$$
24=12 * 2
$$

	$3 x^{2}$	$12 x$
	$2 x$	8

Factor out common factor of the $1^{\text {st }}$ row.

$$
14 x=\underline{12 x}+\underline{2 x}
$$

This tells us to break
14 x into $\underline{2 \mathrm{x}+12 \mathrm{x}}$ $3 x^{2}+14 x+8$

$$
3 x^{2}+2 x+12 x+8
$$

$$
\begin{aligned}
& 3 x^{2}+14 x+8 \\
\rightarrow & (3 x+2)(x+4)
\end{aligned}
$$

Fill in the rest of the table.

These are all of the terms in "the box"
$5 x^{2}+10 x-4$

| $-20=10$ |
| :--- |${ }^{*} \underline{(-2)}$

	x	2
$5 x$	$5 x^{2}$	$10 x$
-2	$-2 x$	-4

$5 x^{2}+10 x-4$

$$
\rightarrow(5 x-2)(x+2)
$$

$6 x^{2}-x-2$

$$
\begin{aligned}
& -12=-4 * 3 \\
& -x=\underline{-4 x}+3 x
\end{aligned}
$$

	$3 x$	-2
$2 x$	$6 x^{2}$	$-4 x$
1	$3 x$	-2

$6 x^{2}-x-2$
$\rightarrow(2 x+1)(x-2)$

Forms of the Quadratic Equation

$$
\begin{aligned}
& y=3 x^{2}+6 x-12 \\
& a=3 \quad b=-4
\end{aligned}
$$

$$
x \text {-coord. of vertex }=\frac{-b}{2 a}
$$

$$
\frac{-b}{2 a}=\frac{-(6)}{2(3)}=-1
$$

$$
\text { Vertex: }(\mathrm{x}, \mathrm{y})=(\ldots, \ldots)
$$

$$
\text { Vertex: }(x, y)=(-1
$$

\square
What is the y-coordinate of the vertex?

$$
\begin{array}{ll}
f(-1)=3(-1)^{2}+6(-1)-12 \\
f(-1)=-15 & \text { Vertex: }(-1,-15)
\end{array}
$$

What is the Vertex form equation?

$$
\text { VSF }=3 \text {, vertex }=(-1,-15) \quad y=3(x+1)^{2}-15
$$

Standard form \rightarrow Vertex Form

$$
\begin{aligned}
& y=2 x^{2}+16 x+24 \\
& a=2 \quad b=16
\end{aligned}
$$

What is the x -coordinate of the vertex?

$$
\begin{gathered}
x \text {-coord. of vertex }=\frac{-b}{2 a} \\
\frac{-b}{2 a}=\frac{-16}{2(2)}=-4
\end{gathered}
$$

$$
\text { Vertex: }(\mathrm{x}, \mathrm{y})=(\ldots, \ldots)
$$

What is the y-coordinate of the vertex?

$$
\begin{array}{ll}
f(-4)=2(-4)^{2}+16(-4)+24 & \text { Vertex: }(-4, \underline{-8}) \\
f(-4)=-8 &
\end{array}
$$

What is the Vertex form equation?

$$
\text { VSF }=2 \text {, vertex }=(-4,-8) \quad y=2(x+4)^{2}-8
$$

Intercept Form \rightarrow Vertex form: The x-coordinate of the vertex is exactly half-way between the two x-intercepts.

$$
\begin{gathered}
f(x)=(x+5)(x-1) \\
x=-5 \quad x=1
\end{gathered} \quad x=\frac{-5+1}{2}=\frac{-4}{2}=-2
$$

What are the x-coordinates of the x-intercepts?
What is the x-coordinate of the vertex?

$$
\text { Vertex: }(x, y)=(-2, \ldots)
$$

What is the y-coordinate of the vertex?

$$
\text { Vertex: }(x, y)=(-2,-9)
$$

$$
f(-2)=(-2+5)(-2-1)=(3)(-3) \quad f(-2)=-9
$$

What is the VSF? $a=1$

$$
y=a(x-p)(x-q)
$$

What is the vertex form equation?

$$
y=a x^{2}+b x+c
$$

$$
y=(x+2)^{2}-9
$$

$$
y=a(x-h)^{2}+k
$$

Vertex form $\quad y=a(x-h)^{2}+k \quad y=(x+3)^{2}-8$

1. Find the zeroes of the function.

$$
\text { Let } \mathrm{y}=0 \quad 0=(x+3)^{2}-8
$$

Isolate the squared term

$$
\begin{aligned}
& 8=(x+3)^{2} \quad \text { "take square roots" } \\
& \sqrt{8}=\sqrt{(x+3)^{2}} \\
& \pm \sqrt{8}=x+3 \text { Simplify the radical } \\
& \pm \sqrt{2 * 2 * 2}=x+3 \\
& \pm 2 \sqrt{2}=x+3 \text { Solve for ' } x \text { ' } \\
& x=-3 \pm 2 \sqrt{2} \\
& \text { x-coord of vertex }
\end{aligned}
$$

Find the zeroes of the function. $y=2(x+7)^{2}-10$

$$
\begin{aligned}
& 0=2(x+7)^{2}-10 \quad \text { set } \mathrm{y}=0 \\
& 10=2(x+7)^{2} \quad \text { Add } 10 \text { (left/right) } \\
& 5=(x+7)^{2} \quad \text { Divide by } 2 \text { (left/right) } \\
& \pm \sqrt{5}=\sqrt{(x+7)^{2}} \quad \text { "take square roots" } \\
& \pm \sqrt{5}=x+7 \quad \text { subtract } 7 \text { from both sides } \\
& -7 \pm \sqrt{5}=x \\
& x=-7+\sqrt{5} \quad x=-7-\sqrt{5}
\end{aligned}
$$

