Math-3 Lesson 3-1 Unit 1 and 2 Weak Area Review (Part 1)

What is *interval notation*?

A way to define the shaded region of a number line.

Describe the shaded region using interval notation.

<u>Give an example</u>.

2

1

 $X = (-\infty, 5]$

 $\mathbf{0}$

-1

What "name" would give the *number '11*' above?

What "name" would give the <u>numbers '-1</u>' and <u>'+2'</u> above?

<u>Critical value</u>: a number(s) on a number line that separates the <u>number line</u> into <u>separate intervals</u>.

Critical value: a boundary number that separates the number line into separate intervals.

x = (3, 6] $x = [-1, \infty)$

<u>What is the significance of the "[", "]", "(", ")" symbols?</u> "[" means the <u>left-side</u> "critical value" is <u>included</u> in the interval. "(" means the <u>left-side</u> "critical value" is <u>NOT included</u> in the interval. "]" means the <u>right-side</u> "critical value" is <u>included</u> in the interval. ")" means the <u>right-side</u> "critical value "is <u>NOT included</u> in the interval.

Graph the two intervals shown above.

Which of the following is *not a correct example* of Interval Notation? If not, explain

a) $x = (-\infty, 5]$ b) $x = [-3, \infty]$ c) x = [-2, 4) d) $x = (5, -\infty)$ b) " ∞ " is not a "number" so it can never be "included" in the interval. b) " ∞ " is on the <u>left end</u> of a number line so it must be the <u>left-side</u> number in interval notation.

<u>Graph the critical values defined by:</u> $x = (-\infty, -3] \cup (-1, 2) \cup [5, \infty)$

Define what it means to say: "The graph is increasing."

→ From left to right it goes upward.
→ Positively sloped.

Define what it means to say:

"The graph is increasing at a specific location, for example at (x, y) = (3, 0)."

A line that is tangent to the graph at the point (3, 0) has a positive slope.

Starting from the left side; draw a graph that is:

Why not?

Starting from the left side; draw a graph that is:

Using Interval Notation, where is the graph:

Increasing?

<u>Using Interval Notation, where is the graph:</u>

Increasing?

Define what it means to say: "The portion of the graph that is positive."

- \rightarrow The part of the graph <u>above the x-axis.</u>
- \rightarrow All x-y pairs whose y-values are positive.

Shade the *input values* whose corresponding output values are positive.

Define the *shaded region* using interval notation.

What does the "multiplicity" of a "zero" refer to?

The number of times the same zero occurs from separate and distinct linear factors of the polynomial. $y = (x-1)^2 = (x-1)(x-1)$

What are the zeroes? $0 = (x - 1)(x - 1) \rightarrow x - 1 = 0$

x = 1 is a "zero" from 2 separate and distinct linear factors

Zeroes: "x = 1 with <u>multiplicity 2</u>"

State the **Fundamental Theorem of Algebra**: <u>If</u> a polynomial has a degree of "n", then the polynomial has "n" zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

 $y = 6x^4 + 42x^3 + 96x^2 + 28x + 48$ "4th Degree" \rightarrow 4 zeroes

 $y = x^4 - 5x^2 + 4$ "4th Degree" \rightarrow 4 zeroes

<u>What is the relationship</u> between the sign of the lead coefficient and degree of the polynomial and the end behavior of the graph?

Positive Lead coefficient and Odd degree: ↓ left and ↑ right ↑ left and ↑ right Positive Lead coefficient and even degree: Negative lead coefficient: (reflection across x-axis) switches to opposite end behavior <-3 $\frac{1}{3x}$ <___ -3 -2 $y = -x^{3}$ $y = -2x^{5}$ $y = -3x^{7}$ $y = -x^{2}$ $y = -6x^{4}$ $y = -9x^{6}$ $y = x^{2}$ $y = 6x^{4}$ $y = 9x^{6}$ $y = x^{3}$ $y = 2x^{5}$ $y = 3x^{7}$

<u>What is the relationship</u> between multiplicity and whether the graph crosses or kisses the real-number zero of the polynomial?

Odd multiplicity:

Crosses x-axis at the zero.

$y = (x - 1)^3$ $y = 2(x - 1)^5$ $y = (x + 2)^2$ $\frac{26}{26}$ $y = 6(x + 2)^4$ $y = 9(x + 2)^6$ $y = 3(x - 1)^7$ 4xZeroes: Zeroes: x = -2 mult. 2 x = 1 mult. 3 x = -2 mult. 4 x = 1 mult. 5 x = -2 mult. 6 x = 1 mult. 7 -6 -5 -4 -3 -2

Even multiplicity:

"kisses" x-axis at the zero.

Write the equation of the line that passes through the data the table.

y = mx + b

$$y = m(0) - 2$$
 $y = mx - 2$
 $5 = m(2) - 2$ $m = \frac{5 - 2}{2} = \frac{3}{2}$

$$y = \frac{3}{2}x + 4$$

Write the equation of the line that passes through the data for each table. y = mx + b

$$\Delta x = -2$$

$$m = \frac{\Delta y}{\Delta x} = \frac{-11}{-2} = \frac{11}{2} \qquad y = \frac{11}{2}x + b$$

$$\Delta y = -11$$
Substitution: $(x, y) = (-5, -6)$

$$= \frac{11}{-2}(-5) + b$$
Simplify right side
$$-6 = \frac{-55}{2} + b$$

$$Add \frac{55}{2} \text{ left/right of "="} -6 + \frac{55}{2} = b$$
Simplify left side
$$\frac{43}{2} = b$$

$$y = \frac{11}{2}x + \frac{43}{2}$$

Factoring Quadratic trinomial whose lead coefficient ≠ 1

Factor out common factor of the 1st row.

Χ

 $3x^2$

2x

3x

2

4

12x

8

Fill in the rest of the table.

These are all of the terms in "the box"

$$10x = 10x + (-2x)$$

	x	2
5x	5x ²	10x
-2	-2x	-4

$$5x^2 + 10x - 4$$

$$\rightarrow (5x-2)(x+2)$$

$$6x^2 - x - 2$$

$$-12 = -4 \times 3$$

 $-x = -4x + 3x$

$$6x^2 - x - 2$$

$$\rightarrow (2x+1)(x-2)$$

Forms of the Quadratic Equation

Standard form → Vertex Form

$$y = 3x^2 + 6x - 12$$
a = 3
$$b = -4$$

What is the x-coordinate of the vertex?

x-coord. of vertex =
$$\frac{-b}{2a}$$

 $\frac{-b}{2a} = \frac{-(6)}{2(3)} = -1$

What is the y-coordinate of the vertex?

$$f(-1) = 3(-1)^{2} + 6(-1) - 12$$

$$f(-1) = -15$$
 Vertex: (-1, -15)

What is the Vertex form equation?

$$VSF = 3$$
, vertex = $(-1, -15)$

$$y = 3(x+1)^2 - 15$$

<u>Standard form → Vertex Form</u>

$$y = 2x^2 + 16x + 24$$

$$a = 2 \qquad b = 16$$

What is the x-coordinate of the vertex?

x-coord. of vertex =
$$\frac{-b}{2a}$$

 $\frac{-b}{2a} = \frac{-16}{2(2)} = -4$

Vertex: (x, y) = (<u>-4</u>, ____

What is the y-coordinate of the vertex?

$$f(-4) = 2(-4)^2 + 16(-4) + 24$$
$$f(-4) = -8$$

What is the Vertex form equation?

$$VSF = 2$$
, $vertex = (-4, -8)$

$$y = 2(x+4)^2 - 8$$

Intercept Form \rightarrow Vertex form: The x-coordinate of the vertex is <u>exactly half-way</u> between the two x-intercepts.

$$f(x) = (x + 5)(x - 1) \qquad x = \frac{-5 + 1}{2} = \frac{-4}{2} = -2$$

What are the x-coordinates of the x-intercepts?

What is the x-coordinate of the vertex?

What is the y-coordinate of the vertex?

Vertex:
$$(x, y) = (-2, -9)$$

$$f(-2) = (-2+5)(-2-1) = (3)(-3) \quad f(-2) = -9$$

What is the VSF? a = 1

$$y = a(x-p)(x-q)$$

What is the vertex form equation?

$$y = (x + 2)^2 - 9$$

$$y = ax^2 + bx + c$$

$$y = a(x-h)^2 + k$$

Vertex form
$$y = a(x-h)^2 + k$$
 $y = (x+3)^2 - 8$

1. Find the zeroes of the function.

Let
$$y = 0$$
 $0 = (x+3)^2 - 8$

Isolate the squared term

 $8 = (x+3)^2$ "take square roots" $x = -3 - 2\sqrt{2}$ $x = -3 + 2\sqrt{2}$ $\sqrt{8} = \sqrt{(x+3)^2}$ $\pm \sqrt{8} = x + 3$ Simplify the radical $\pm \sqrt{2 * 2 * 2} = x + 3$ $\pm 2\sqrt{2} = x + 3$ Solve for 'x' $x = (-3 \pm 2\sqrt{2})$ x-coord of vertex

Find the zeroes of the function. $y = 2(x+7)^2 - 10$ $0 = 2(x+7)^2 - 10$ set y = 0 $10 = 2(x+7)^2$ Add 10 (left/right) $5 = (x+7)^2$ Divide by 2 (left/right) $\pm \sqrt{5} = \sqrt{(x+7)^2}$ "take square roots" $\pm \sqrt{5} = x + 7$ subtract 7 from both sides $-7 \pm \sqrt{5} = x$ $x = -7 + \sqrt{5}$ $x = -7 - \sqrt{5}$