Math-3

Lesson 2-8 Divide Polynomials

Long Division

$$\frac{541}{12} = 12)541$$

$$=12)541$$
 $=43$
 $=43$

$$= 6$$

= 61

$$\frac{-60}{=1}$$

Look at the left numbers

12 divides 54

4 times 12 = 48

Subtract 48 from 54

Bring the "1" down.

5 times 12 = 60; subtract 60 from 61

$$\frac{541}{12} = 45 + \frac{1}{12}$$
 Remainder Divisor

The Factor Theorem If a polynomial f(x) is divided by (x - k), and the remainder is "0," then (x - k) is a factor of the original polynomial and the zero of (x - k) is a zero of the polynomial.

<u>Polynomial Long division</u>: One method used to divide polynomials similar to long division for numbers.

$$x + 4 \int x^2 + 5x + 4$$

$$-(x^2 + 4x)$$

$$x + 4$$

$$-(x + 4)$$
The remainder = 0

Is
$$(x + 4)$$
 a factor of: $x^2 + 5x + 4$?

YES, according to the Factor Theorem.

The zero of (x + 4) is a zero of

$$f(x) = x^2 + 5x + 4$$

$$(x)-1$$
 $)$ $(x^3)+3x^2+14x-18$

1) Look at left-most numbers

2) What # times "left" = "left"?

$$x^{3}/x = ? = x^{2}$$

3) Multiply

$$x^2(x-1) = x^3 - x^2$$

4) Subtract

$$-(x^3-x^2)$$

$$\begin{array}{c}
x^{2} \\
\hline
x - 1 \\
-(x^{3} - x^{2})
\end{array}$$

4) Subtract

Careful with the negatives!

 $4x^2 + 14x - 18$

5) Bring down.

$$x^2 + 4x$$

$$\begin{array}{c}
x & 14x \\
x^3 + 3x^2 + 14x - 18 \\
-(x^3 - x^2)
\end{array}$$

$$\frac{4x^2 + 14x - 18}{-(4x^2 - 4x)}$$

2) What # times

18x

"left" = "left"?
$$\frac{4x^2}{x} = ? = 4x$$

3) Multiply

$$4x(x-1) = 4x^2 - 4x$$

4) Subtract

$$-(4x^2-4x)$$

4) Subtract

 $4x^2 + 14x - 18$
-(4x^2 - 4x)

Careful of the negatives

18x - 18

5) Bring down.

$$\begin{array}{c} x^2 + 4x + 18 \\ \hline (x) - 1 \\ \hline) x^3 + 3x^2 + 14x - 18 \\ \hline -(x^3 - x^2) \\ \hline \end{array}$$

$$4x^2 + 14x - 18$$
$$-(4x^2 - 4x)$$

$$-(18x - 18)$$

6) Repeat steps 1-5.

1) Look at leftmost numbers

2) What # times "left" = "left"?

$$\frac{18x}{x} = 18$$

3) Multiply

$$18(x-1)$$

18x - 18

4) Subtract

$$-(18x - 18)$$

$$\begin{array}{r}
x^2 + 4x - 18 \\
x - 1) x^3 + 3x^2 + 14x - 18 \\
-(x^3 - x^2) \\
\hline
4x^2 + 14x - 18 \\
-(4x^2 - 4x) \\
\hline
18x - 18 \\
-(18x - 18)
\end{array}$$

$$x^3 + 3x^2 + 14x - 18 = (x - 1)(x^2 + 4x - 18)$$

How do we find the zeroes of the unfactorable quadratic factor? Convert to vertex form and take square roots.

Division with remainders

$$x-2) x^4 + x^3 - 4x^2 + 2x - 12$$

Is there an easier way to do this? Yes!

1st step: Write the polynomial with only its coefficients.

2nd step: Write the "zero" of the linear factor.

3rd step: add down

Is there an easier way to do this?

Yes!

4th step: Multiply the "zero" by the lead coefficient.

5th step: Write the product under the next term to the right.

6th step: add the second column downward

Is there an easier way to do this?

Yes!

7th step: Multiply the "zero" by the second number

8th step: Write the product under the next term to the right.

9th step: add the next column downward

Is there an easier way to do this?

Yes!

10th step: Multiply the "zero" by the 3rd number

11th step: Write the product under the next term to the right

12th step: add the next column downward

$$x^{2} - 3x - 18$$

$$x - 1) x^{3} - 4x^{2} - 15x + 18$$

$$1) 1 -4 -15 18$$

$$1 -3 -18 0$$
remainder

$$x^3 - 4x^2 - 15x + 18 \div (x - 1) = x^2 - 3x - 18$$

Because the <u>remainder = 0</u>, then (x - 1) is a factor <u>AND</u> x = 1 is a zero of the original polynomial!

Is (x + 3) a factor of f(x)?

$$f(x) = 3x^3 - x^2 - 20x - 12$$

Is (x + 2) a factor of f(x)?

$$f(x) = 3x^3 - x^2 - 20x - 12$$

The "gotcha" of Synthetic Division is that you <u>must account for</u> the missing terms of the polynomial (whose coefficients = 0).

$$x^{2} - 4 = (x + 2)(x - 2)$$

$$x - 2 \sqrt{x^{2} - 4}$$

$$x - 2 \sqrt{x^{2} + 0x - 4}$$

$$2 \sqrt{1} - 4$$

$$2 \sqrt{1} \sqrt{1}$$

$$2 \sqrt{1} - 2$$

$$1 - 2 \sqrt{1}$$

$$2 \sqrt{1} \sqrt{1}$$
remainder not = 0
$$\frac{x^{2} - 4}{1} = (x + 2)(x - 2)$$

$$2 \sqrt{1} \sqrt{1} \sqrt{1}$$
remainder = 0

Another "gotcha" of Synthetic Division is that you can divide by *linear factors whose lead coefficient* = 1.

$$x-2$$
 x^3-x^2+x-1

The <u>remainder of division</u> is the <u>output value</u> when the input is the zero of the divisor!

- remainder = 5

$$(x^3-x^2+x-1)\div(x-2) = x^2+x+3+\frac{5}{x-2}$$

Now here is something that is really cool.

$$f(x) = x^3 - x^2 + x - 1$$
 $f(2) = ?$

$$f(2) = (2)^3 - (2)^2 + (2) - 1$$
 $f(2) = 5$

Polynomial Division Box Method

$$(2x^3 + 15x^2 + 27x + 5) \div (2x + 5)$$

Only the <u>upper left</u> box is known. Remainder

Diagonals have "like terms"

$$(2x^3 + 15x^2 + 27x + 5) \div (2x + 5) = x^2 + 5x + 1$$

Division of Polynomials Box Method

$$(3x^5 + 12x^4 + 11x^3 + 2x^2 - 4x - 2) \div (3x^2 - 1)$$

Only the <u>upper left</u> box is known. Diagonals have "like terms"

Division with remainders

$$(-x^4 - 5x^3 - 2x^2 + 4x + 1) \div (x + 3)$$

Only the <u>upper left</u> box is known. Diagonals have "like terms"

<u>Divide.</u> $x^4 + x^3 - 4x^2 + 2x - 12 \div x^2 - 2$

Divide. $2x^4 + 9x^3 - 8x^2 - 15x \div 2x - 3$

$$y = x^5 - 5x^4 + 12x^3 - 24x^2 + 32x - 16$$

1. Test to see if '1' is a zero

2. Test to see if '1' is a zero (with multiplicity two)

'1' is not a repeat zero $\rightarrow x = 1$ (multiplicity 1)

$$y = (x - 1)(x^4 - 4x^3 + 8x^2 - 16x + 16)$$

'1' is not a repeat zero \rightarrow x = 1 (multiplicity 1)

3. Test to see if '2' is a zero.

$$y = (x-1)(x-2)(x^3-2x^2+4x-8)$$

$$y = (x - 1)(x - 2)(x^3 - 2x^2 + 4x - 8)$$

4. Try "box factoring" of the 3rd – degree polynomial factor or continue trying synthetic division.

	X	-2
x^2	x^3	$-2x^2$
4	4 <i>x</i>	-8

$$y = (x - 1)(x - 2)(x^2 + 4)(x - 2)$$

5. List the zeroes.

$$x = 1, 2i, -2i, 2 (multiplicity 2)$$