Math-3

Lesson 2-6
 Zeroes of "NICE" 3rd Degree Polynomials

Find the zeroes of the following $3^{\text {rd }}$ degree Polynomial

$$
y=x^{3}+5 x^{2}+4 x \quad \text { Set } y=0
$$

$0=x^{3}+5 x^{2}+4 x$
Factor out the common factor.
$0=x\left(x^{2}+5 x+4\right)$
$0=x(x+1)(x+4)$
Factor the quadratic

Identify the zeroes

$$
0, \quad-1, \quad-4
$$

"Nice" 3rd Degree Polynomial (with no constant term)

$$
y=3 x^{3}+12 x^{2}-36 x
$$

It has no constant term so it can easily be factored into ' x ' times a quadratic factor.

$$
y=3 x\left(x^{2}+4 x-12\right)
$$

If the quadratic factor is "nice" we can factor that into 2 binomials.

$$
\begin{gathered}
y=3 x(x+6)(x-2) \\
x=0, \quad-6, \quad 2
\end{gathered}
$$

This is now "intercept form" so we can "read off" the x-intercepts. What are they?

Find the Zeroes

$$
y=x^{3}-6 x^{2}-16 x
$$

$$
y=x^{3}+4 x^{2}-12 x
$$

$$
y=2 x^{3}-6 x^{2}-30 x
$$

Find the Zeroes

$$
y=x^{3}+6 x^{2}-4 x
$$

$$
y=x^{3}+4 x^{2}-11 x
$$

$$
y=2 x^{3}-16 x^{2}+14 x
$$

"Nice" 3 ${ }^{\text {rd }}$ Degree Polynomial (with no constant term)

$$
\begin{aligned}
& y=x^{3}+6 x^{2}+4 x+0 \\
& 0=x^{3}+6 x^{2}+4 x
\end{aligned}
$$

It has no constant term so it can easily be factored into ' x ' times a quadratic factor. $0=x\left(x^{2}+6 x+4\right.$

$$
x=0
$$

What if the quadratic factor is not factorable?

$$
\begin{array}{cc}
x=\frac{-b}{2 a}=\frac{-(6)}{2(1)} & 0=(x+3)^{2}-5 \\
x=-3 & x=-3 \pm \sqrt{5}
\end{array}
$$

Convert the quadratic factor into vertex form and solve.

$$
y=f(-3)=(-3)^{2}+6(-3)+4
$$

Zeroes:

$$
y=-5
$$

$$
x=0,-3 \pm \sqrt{5}
$$

Factor the following "nice" $3^{\text {rd }}$ degree polynomials then find the "zeroes" of the polynomial.

$$
\begin{gathered}
y=x^{3}+5 x^{2}-14 x \\
0=x^{3}+5 x^{2}-14 x \\
0=x\left(x^{2}+5 x-14\right) \\
0=x(x+7)(x-2) \\
0, \quad-7,
\end{gathered}
$$

$$
\begin{gathered}
y=3 x^{3}-24 x^{2}+6 x \\
0=3 x\left(x^{2}-8 x+2\right) \\
x=0 \\
x=\frac{-b}{2 a}=\frac{-(-8)}{2(1)} \\
x=4 \\
y=f(4)=(4)^{2}-8(4)+2 \\
y=-14 \quad 0=(x-4)^{2}-14 \\
x=4 \pm \sqrt{14}
\end{gathered}
$$

Find the zeroes using "box factoring"

$$
\begin{gathered}
y=4 x^{3}-5 x^{2}+12 x-15 \\
0=\left(x^{2}+3\right)(4 x-5) \\
0=x^{2}+3 \quad 4 x-5=0 \\
-3=x^{2} \quad 4 x=5 \\
x= \pm i \sqrt{3} \quad x=5 / 4 \\
x=\mathrm{i} \sqrt{3},-\mathrm{i} \sqrt{3}, 5 / 4
\end{gathered}
$$

Box Factoring works for "Nice" $3^{\text {rd }}$ Degree Polynomial

$$
y=a x^{3}+b x^{2}+c x+d
$$

This has the constant term, but it has a very useful feature:

$$
y=1 x^{3}+2 x^{2}+2 x+4
$$

What pattern do you see?

$$
3 r d / 1 s t=2 / 1 \quad 4 t h / 2 n d=4 / 2=2 / 1
$$

If we divide the coefficients of the $1^{\text {st }}$ and $3^{\text {rd }}$ terms, and the coefficient of the $2^{\text {nd }}$ term and the constant, we get the same number.
"factor by grouping" if it has this nice pattern.

$$
y=1 x^{3}+2 x^{2}+2 x+4
$$

Group the $1^{\text {st }}$ and last pair of terms with parentheses.

$$
y=\left(x^{3}+2 x^{2}\right)+(2 x+4)
$$

Factor out the common term from the first group.

$$
y=x^{2}(x+2)+(2 x+4)
$$

Factor out the common term from the last group.

$$
y=x^{2}(x+2)+2(x+2)
$$

$$
y=x^{2}(x+2)+2 x+2 x
$$

These two binomials are now common factors of

$$
x^{2} \text { and } 2
$$

Factor out the common binomial term.

$$
\begin{aligned}
& y=(x+2)\left(x^{2}+2\right) \\
& x=-2, \mathrm{i} \sqrt{2},-\mathrm{i} \sqrt{2}
\end{aligned}
$$

Apply the Complex Conjugates Theorem

An easier method is "box factoring" (if it has this nice pattern).

$$
y=1 x^{3}+2 x^{2}+2 x+4
$$

These 4 terms are the numbers in the box.
Find the common factor of the $1^{\text {st }}$ row.
Fill in the rest of the box.
Rewrite in intercept form.

$$
\begin{aligned}
& y=1 x^{3}+2 x^{2}+2 x+4 \\
& y=\left(x^{2}+2\right)(x+2)
\end{aligned}
$$

Find the "zeroes."

$$
\begin{aligned}
& 0=\left(x^{2}+2\right)(x+2) \\
& 0=x^{2}+2 \quad 0=x+2 \\
& x=-2
\end{aligned}
$$

Find the zeroes using "box factoring"

$$
\begin{gathered}
y=2 x^{3}+3 x^{2}+4 x+6 \\
x=
\end{gathered}
$$

$$
y=4 x^{3}+8 x^{2}+5 x+10
$$

$$
x=
$$

$$
\begin{gathered}
y=-6 x^{3}+7 x^{2}-18 x+21 \begin{array}{l|l|l|}
\hline & & \\
\hline & & \\
\hline x= & & \\
\hline
\end{array}{ }^{2}= \\
\hline
\end{gathered}
$$

What have we learned so far?

"Nice" Common Factor $3^{\text {rd }}$ degree polynomial:

$$
\begin{array}{r}
y=x^{3}+3 x^{2}+2 x \quad=x\left(x^{2}+3 x+2\right) \\
=x(x+1)(x+2)
\end{array}
$$

"Nice" Factor by box $3^{\text {rd }}$ degree polynomial:

$$
y=2 x^{3}+3 x^{2}+4 x+6
$$

