Math-3
 Lesson 2-5
 Analyzing Polynomial Equations

Polynomial: An equation (or an expression) with same-base powers being added that are raised to a natural number exponent.
Example: $\quad y=8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3$
Not a polynomial $y=x^{0.5}+3 x^{2 / 3}+6 \sqrt{x}$

Lead coefficient: the coefficient of the largest power.

$$
y=-8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3
$$

Degree: the largest exponent of the polynomial.

Standard Form Polynomial A polynomial ordered so that the exponents get smaller from the left-most term to the rightmost term. $y=\underline{8 x^{5}}+\underline{5 x^{4}}+\underline{9 x^{3}}+\underline{x^{2}}+\underline{2 x}+\underline{3}$
Term: powers (or the constant) separated by either a '+' or '-' symbol.
Number of terms: If all terms are present, a $\underline{2}^{\text {nd }}$ degree polynomial as $\underline{3 \text { terms in standard form. } y=2 x^{2}-4 x+5}$

If you include the number zero as a possible coefficient, an " n-th degree polynomial has $n+1$ terms (i.e., a $3^{\text {rd }}$ degree has 4 terms).

$$
y=4 x^{3}+0 x^{2}-4 x+5
$$

Intercept Form Polynomial A polynomial that has been factored into linear factors, from which you can identify the input values that make the output value equal to zero.

Example: $\quad y=6(x+4)(x+3)(x-2 i)(x+2 i)$

Linear factors: the exponent of the power is a ' 1 '.
$y=m x+b$ Is a linear equation so $(x+2)$ is a linear factor

Solve by factoring: If the equation has only one variable (' y ' has already been set to zero), solve by factoring means to convert a standard form polynomial into intercept form (by factoring) and then identifying the zeroes of the polynomial.

$$
y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48
$$

Zeroes of Polynomials: come from linear factors.

$$
\begin{aligned}
0= & 6(x+4)(x+3)(x-2 i)(x+2 i) \\
& x=-4 \quad x=-3 \quad x=2 i \quad x=-2 i
\end{aligned}
$$

If the polynomial is already in intercept form: just find the zeroes.

$$
\begin{gathered}
0=(x+5)(x-2)(x-\sqrt{3})(x+\sqrt{3}) \\
x=-5 \quad x=2 \quad x=\sqrt{3} \quad x=-\sqrt{3}
\end{gathered}
$$

Given the zeroes, write the equation of the Polynomial:

$$
\begin{gathered}
x=-2 \quad x=3 \quad x=6 \\
y=(x+2)(x-3)(x-6)
\end{gathered}
$$

Polynomial: An equation (or an expression) with same-base powers being added that are raised to a non-negative integer exponents. \rightarrow Convert to "standard form."

$$
\begin{aligned}
& y=a(x+2)(x-3)(x-6) \quad \rightarrow \text { Assume VSF }=1 \\
& y=(x+2)\left(x^{2}-9 x+18\right) \\
& \begin{array}{|c|c|c|c|}
\hline & x^{2} & -9 x & 18 \\
\hline x & x^{3} & -9 x^{2} & 18 x \\
\hline 2 & 2 x^{2} & -18 x & 36 \\
\hline
\end{array} \quad \begin{array}{l}
y=x^{3}-7 x^{2}+36 \\
\hline
\end{array}
\end{aligned}
$$

Fundamental Theorem of Algebra: If a polynomial has a degree of "n", then the polynomial has "n" zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$
y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48
$$

" $4^{\text {th }}$ Degree" $\rightarrow 4$ zeroes $\mathrm{x}=-4,-3,2 \mathrm{i},-2 \mathrm{i}$
Multiplicity: the number of times a zero is repeated for a polynomial.

$$
y=(x-1)^{2}=(x-1)(x-1)
$$

$\mathrm{x}=1$ is a "zero" of the polynomial twice.
$x=1$ is a zero of the polynomial with multiplicity 2
Linear Factorization Theorem: If a polynomial has a degree of " n ", then the polynomial can be factored into " n " linear factors.

$$
y=6(x+4)(x+3)(x-2 i)(x+2 i)
$$

Since each linear factor has one zero, these two theorems are almost saying the same thing.

Quadratic Formula: gives zeroes of $2^{\text {nd }}$ degree polynomials.

$$
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Complex Conjugates Theorem: If ($\mathrm{a}+\mathrm{bi}$) is a zero of a polynomial, then its complex conjugate ($\mathrm{a}-\mathrm{bi}$) is also a zero of $\mathrm{f}(\mathrm{x})$.

Example: $\quad y=x^{2}-4 x+5$
Factorization: $y=(x-2-3 i)(x-2+3 i)$
Zeroes: $\quad x=2-3 i, \quad x=2+3 i$
Example: $y=x^{2}+4$
Factorization: $y=(x+2 i)(x-2 i)$
Zeroes: $\quad x=2 i,-2 i$

Quadratic Formula: gives zeroes of $2^{\text {nd }}$ degree polynomials.

$$
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Irrational Roots (Zeroes) Theorem: If an irrational number is the zero of a polynomial, then the conjugate of the irrational number is also a zero.
Example: $\quad y=x^{2}+4 x+1$
Factorization: $y=(x+2-\sqrt{3})(x+2+\sqrt{3})$
Zeroes: $\quad x=2-\sqrt{3}, \quad x=2+\sqrt{3}$
Example: $\quad y=x^{2}+4$
Factorization: $\quad y=(x+2 i)(x-2 i)$
Zeroes: $\quad 3-\sqrt{2}, \quad 3+\sqrt{2}$

Analyzing Polynomials

What is the "end behavior" of the graph?
(right end goes up)
as $x \rightarrow+\infty, y \rightarrow ? \quad y \rightarrow \infty$
(left end goes down)
as $x \rightarrow-\infty, y \rightarrow ? \quad \mathrm{y} \rightarrow-\infty$
$y=x$

Do you notice a pattern between the degree and the end

$$
y=x
$$

(up right, down left)

$y=x^{2}$
(up right, up left)

$$
y=x^{3}
$$

(up right, down left)

Odd degree: (up right, down left)
even degree: (up right, up left)
$4^{\text {th }}$ Degree Polynomial (even degree)

$$
y=(2 x+8)(3 x+6)(x-1)(x-3)
$$

"left * left * left * left" = ? $=6 x^{4}$
$y=6 x^{4}+\ldots($ other terms $)$

Degree vs. End Behavior

$$
y=x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

Pick a very large input value: $1,000,000=10^{\wedge} 6$ then compare each term.

$$
\begin{aligned}
& \left(10^{6}\right)^{5}=10^{30} \\
& \left(10^{6}\right)^{4}=10^{24} \\
& \left(10^{6}\right)^{3}=10^{18} \\
& \left(10^{6}\right)^{2}=10^{12} \\
& \left(10^{6}=10^{6}\right. \\
& 1
\end{aligned}
$$

Compare the largest two powers.

$$
10^{30}=10^{24} * 10^{6}
$$

Input $=1,000,000 \rightarrow$ output of
the $1^{\text {st }}$ term is $1,000,000$
times as big as the output of the $2^{\text {nd }}$ term.

$$
y=x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

As $x \rightarrow \infty, x^{\wedge} 5$ becomes the dominant term
\rightarrow all the other terms become insignificant compared to $x^{\wedge} 5$.

How does this affect end behavior?
The lead term determines end behavior!!!
What is the end-behavior of an odd-degree polynomial?
(right end up, left end down)

Multiply Powers Property of Exponents. $x^{2} * x^{3}=x^{5}$
DO NOT think of exponents as a power! The base AND its exponent combined is a power.
$y=3(x-2)^{3}(x+4)^{2}(x-\sqrt{5})(x+\sqrt{5})(x-3 i)(x+3 i)$
What are the zeroes and their multiplicities?

Zeroes: $x=2$ (multiplicity 3), -4 (mult. 2), etc.

What is the degree of this polynomial?
$\left(3^{\text {rd }}\right.$ degree $) *\left(2^{\text {nd }} \text { degree }\right)^{*}\left(1^{\text {stt }}\right)\left(1^{\text {stt }}\right)\left(1^{\text {stt }}\right)\left(1^{\text {st }}\right)=9^{\text {th }}$ degree \rightarrow Odd degree

Polynomials in intercept form

$$
\begin{aligned}
& y=(x-1)(2 x+2)(x-3)(2 x+8) \\
& y=12 x^{4}+\ldots(\text { other terms }) . .+48 \\
& \text { "right * right * right * right" }=?=48
\end{aligned}
$$

y -intercept $=48$

$4^{\text {th }}$ degree polynomial \rightarrow "4 zeroes"

Max number of x-intercepts?

$$
y=x^{4}-4 x^{2}+1
$$

$$
y=x^{5}-x^{4}-4 x^{2}+1
$$

The degree of the polynomial equals the number of zeroes AND gives you the max number of x-intercepts (real number zeroes).

Polynomial Degree \rightarrow End Behavior?

$y=x^{4}-4 x^{2}+1$

$$
y=x^{5}-x^{4}-4 x^{2}+1
$$

All even degree polynomials have the same end behavior!

All odd degree polynomials have the same end behavior!

Lead Coefficient \& Degree \rightarrow End Behavior?

All odd degree polynomials have the same end behavior!
negative lead coefficient: reflection across the x-axis, all negative-odd polynomials have the same end behavior!

How many real zeroes will the polynomial have?
Does an even degree polynomial necessarily cross the x-axis?

Does an odd degree polynomial necessarily cross the x-axis?

Describe the end behavior (up left/right, up left down right, etc.)

$$
f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8
$$

Positive lead coefficient, even degree $\quad \uparrow$ left \uparrow right

$$
f(x)=-7 x^{3}-8 x^{2}+14 x+8
$$

negative lead coefficient, odd degree
\uparrow left \downarrow right

Make a table of the possible zeroes by category

Degree	Real zeroes	Imaginary Zeroes
2	2	0
	1 (mult 2)	0
	1	1 Not possible
	0	2

Not possible because imaginary zeroes always come conjugate pairs (Complex Conjugates Theorem)

If we count multiplicities as separate solutions it is easier.

Degree	Real zeroes	Imaginary Zeroes
2	2	0
	1	1 Not possible
	0	2

Degree	Real zeroes	Imaginary Zeroes	
3	0	3	Not possible
	1	2	
	2	1	Not possible
	3	0	

Degree	Real zeroes	Imaginary Zeroes
4	0	4
	1	3 Not possible
	2	2
	3	1 Not possible
	4	0

The General Shape of the Graph of a Polynomial

$$
f(x)=(x-2)(x-3)(x+4)
$$

zeroes: $x=2,3$, and -4 .
All are real numbers. \rightarrow All are x-intercepts. positive lead coefficient and an odd degree.
The end behavior is \downarrow left, \uparrow right

$$
f(x)=x(x+1)(x-1)(x-2)
$$

zeroes: $\mathrm{x}=0,-1,1$, and 2 .
All are real numbers.
All are x -intercepts.

positive lead coefficient and an even degree.

The end behavior is up right, up left

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

zeroes: $\mathrm{x}=-1,-1 .-3$, and 4 .
All are real numbers.

positive lead coefficient and an even degree.

The end behavior is Up right, up left ?
All are x -intercepts.
\qquad ?

Why doesn't the "end behavior" line up?

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

It has the following zeroes: $x=-1,-,-3$, and 4 .
The zero with an EVEN "multiplicity will just "kiss" the x-axis. Remember $y=x^{2}$?

$$
f(x)=(x+2 i)(x-2 i)(x-4)^{2}(x+2)
$$

It has the following zeroes: $\mathrm{x}=2 \mathrm{i},-2 \mathrm{i}, 4,4$, and -2
Only 4 and -2 are real numbers.
These are \underline{x}-intercepts. positive lead coefficient and an odd degree.

The end behavior is ___ Up right, down left ?
The graph "kisses" at $\mathrm{x}=4$

$$
-2
$$

$$
4
$$

