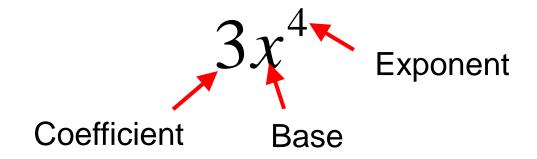
Math-3 Lesson 1-4

Cube, and Cubed Root Functions.

What is a power?

<u>Power</u>: An <u>expression</u> formed by repeated Multiplication of the same <u>factor</u>.



The <u>base</u> is used as a <u>factor</u> the <u>exponent</u> <u>number of times</u>.

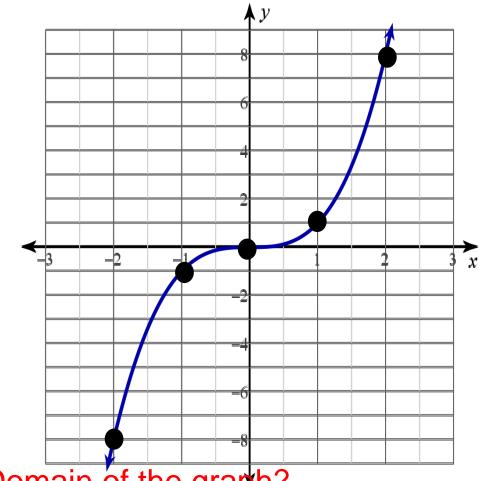
$$3*x*x*x*x$$

The Cube Function

$$f(x) = x^3$$

Build a table of values for each equation for domain elements: -2, -1, 0, 1, 2.

X	У	
-2	-8	$y = (-2)^{\frac{1}{2}}$
-1	-1	$y = (-1)^3$
0	0	$y = (0)^3$
1	1	$y = (1)^3$
2	8	$y = (2)^3$



Domain of the graph?

$$\chi = (-\infty, \infty)$$

Range of the graph?

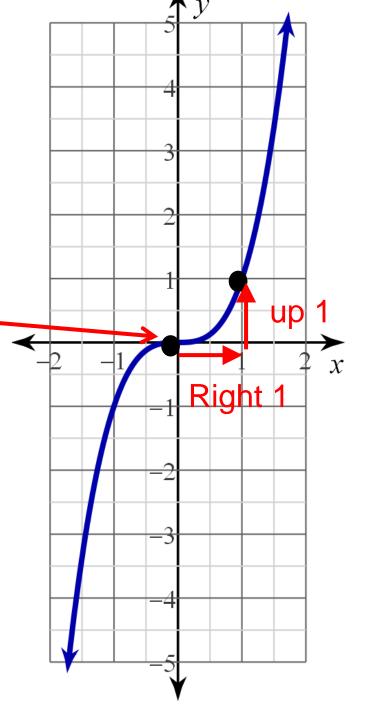
$$y = (-\infty, \infty)$$

$$f(x) = x^3$$

Inflection Point: the point where the shape of the graph changes from "concave down" (curving downward) to "concave up" (curving upward) or vice versa.

Inflection point: (0, 0)

Shape of the graph: Not vertically stretched: from the inflection point "right 1, up 1"



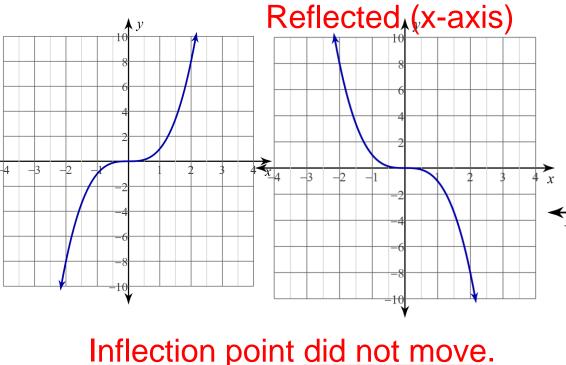
Left/right and up/down transformations move the inflection point (and the whole graph)

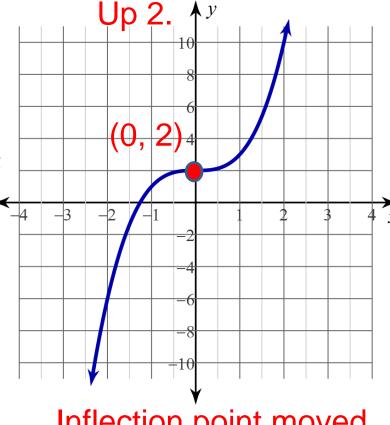
Describe the transformations:

$$f(x) = x^3$$

$$f(x) = x^3 \qquad g(x) = -x^3$$

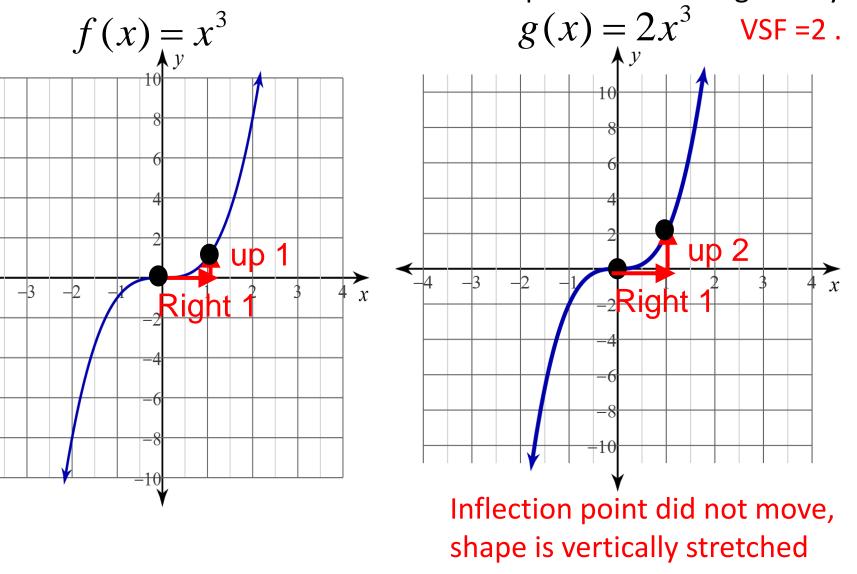
$$k(x) = x^3 + 2$$

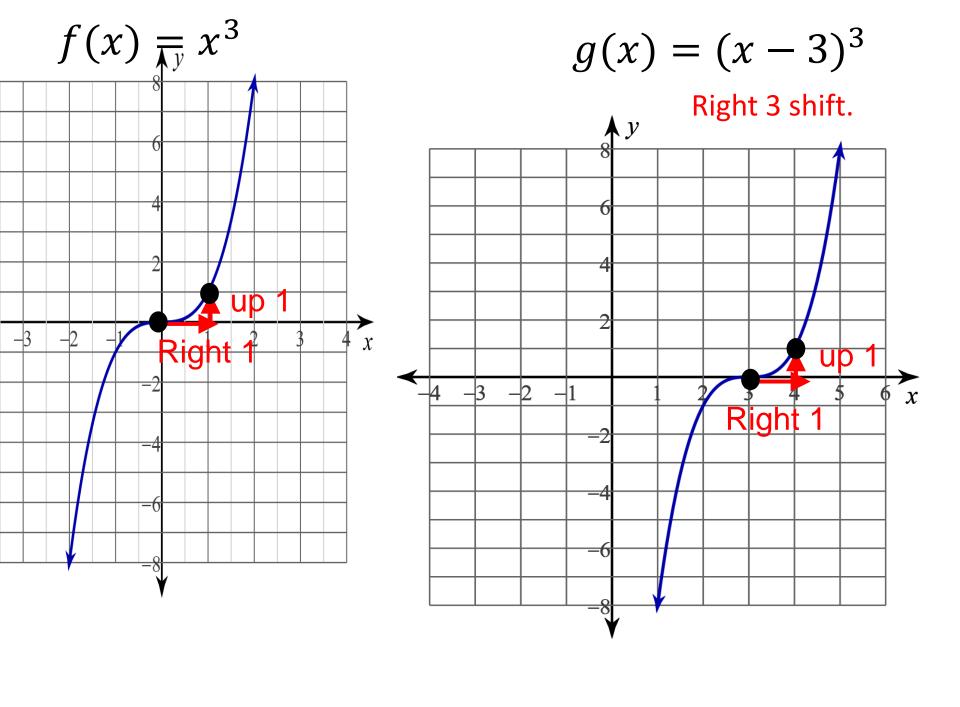




Inflection point moved, shape did not change.

Describe the transformations of the parent function given by:



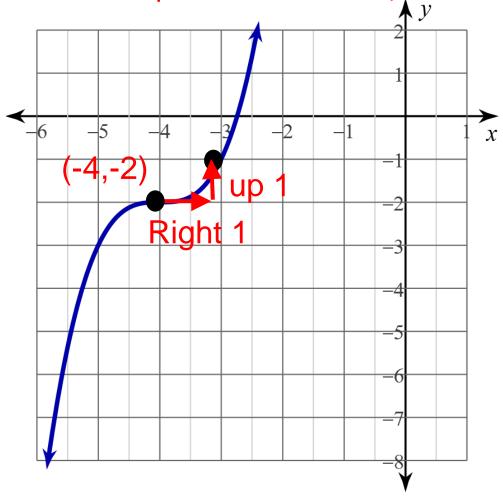


Where is the inflection point?

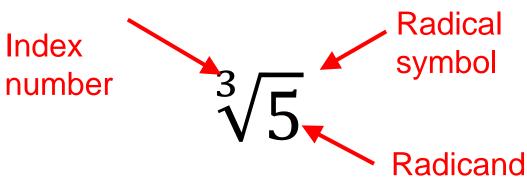
$$f(x) = x^3$$

$$j(x) = (x + 4)^3 - 2$$

Inflection point moves left 4, down 2



Cubed Root (or 3rd root)



$$x = \sqrt[3]{5}$$
 Some number equals the cubed root of 5.

Use the <u>property of equality</u> to "cube" the left and right side of the equal sign results in an <u>equivalent equation</u>.

$$(x)^3 = \left(\sqrt[3]{5}\right)^3$$
$$x^3 = 5$$

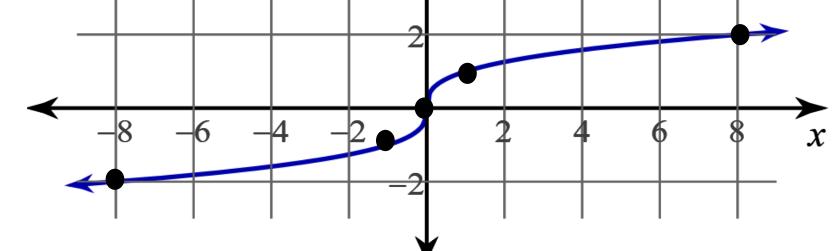
 $\sqrt[3]{5}$ means "what number cubed equals 5"

4-5

Cubed Root function: $f(x) = \sqrt[3]{x}$

Fill in the output values of the table, then graph the points.

X	У	then graph the points.			
-8	-2	$y = \sqrt[3]{-8}$	$y^3 = -8$	y = -2	
-1	-1	$y = \sqrt[3]{-1}$	$y^3 = -1$	y = -1	
0	0	$y = \sqrt[3]{0}$	$y^{3} = 0$	y = 0	
1	1	$y = \sqrt[3]{1}$	$y^{3} = 1$	y = 1	
8	2	$y = \sqrt[3]{8}$	$y^3 = 8 $	y y = 2	

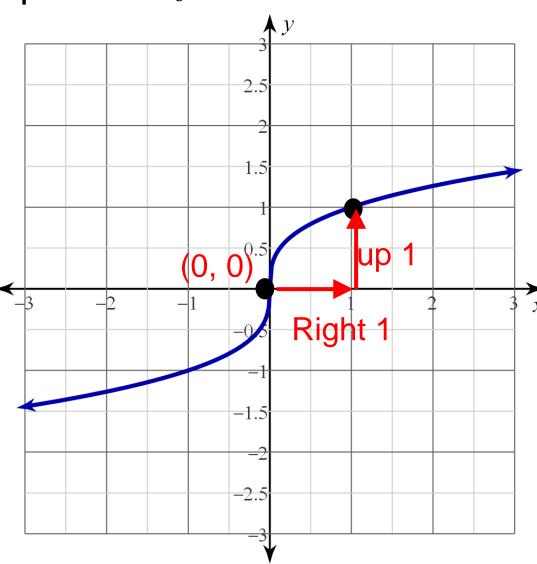


Where is the inflection point? $f(x) = \sqrt[3]{x}$

Not vertically stretched: "right 1, up 1"
From the inflection point

domain? All real numbers.

range? All real numbers.

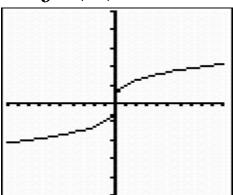


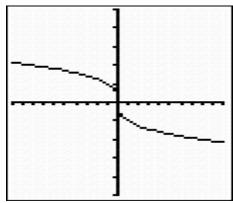
What is the transformation of the parent function?

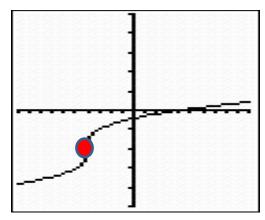
$$f(x) = \sqrt[3]{x}$$

$$k(x) = -\sqrt[3]{x}$$

$$k(x) = -\sqrt[3]{x}$$
 $g(x) = -2 + \sqrt[3]{x+4}$

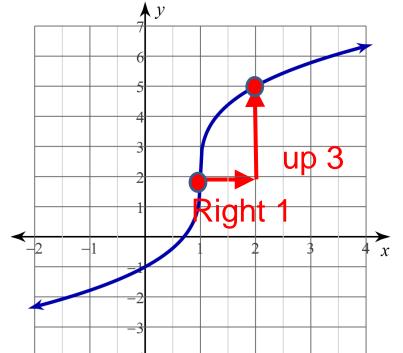






Reflected(x-axis)

Left 4, down 2 Inflection point: (-4, -2)

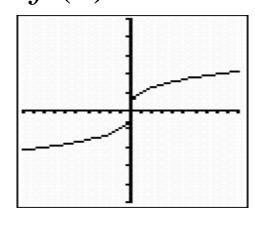


$$j(x) = 3\sqrt[3]{x - 1} + 2$$

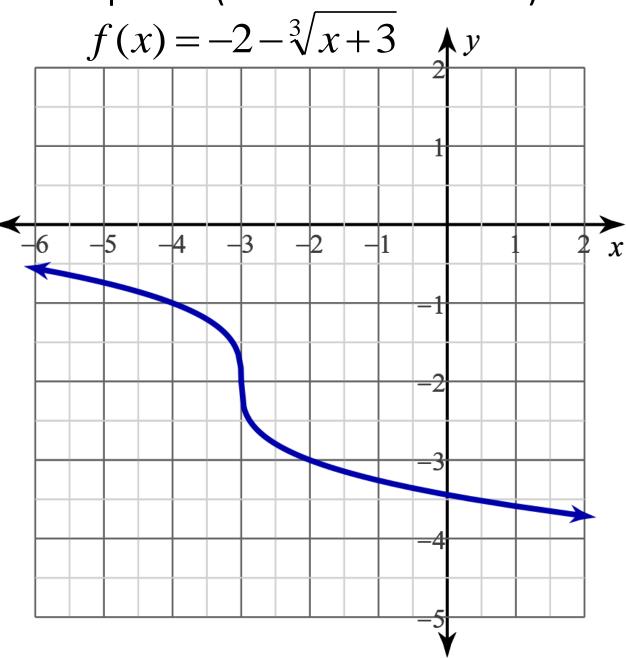
VSF=3, right 1, up 2

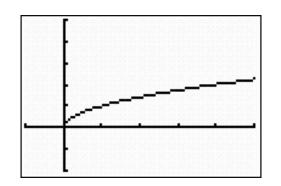
Inflection point: (1, 2)

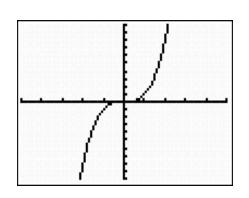
$$f(x) = \sqrt[3]{x}$$

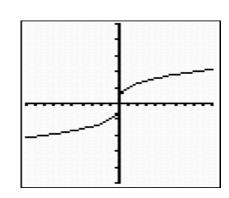


Graph the (without a calculator).







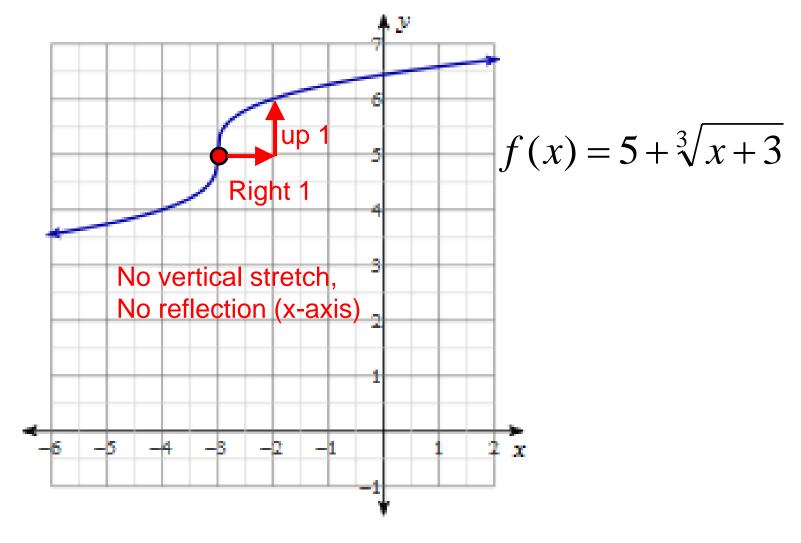


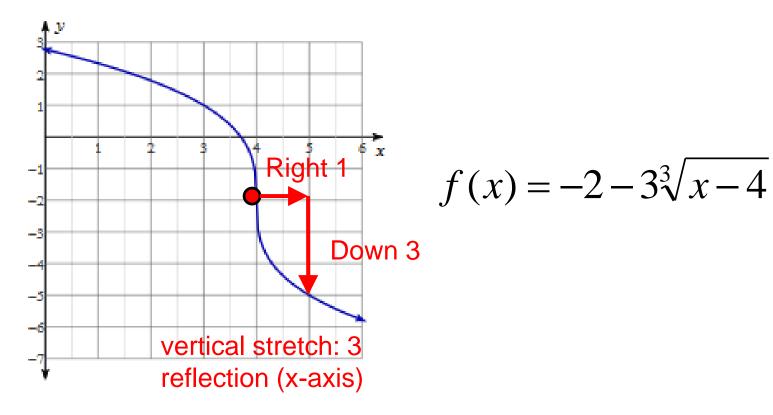
$$f(x) = \sqrt{x}$$

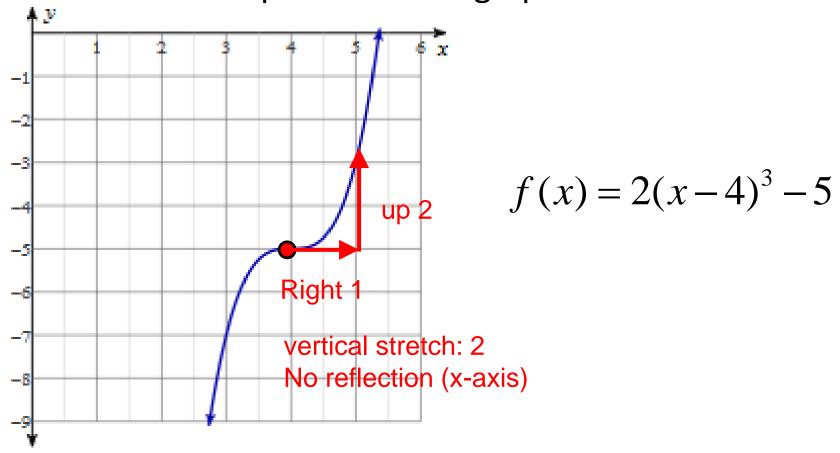
$$f(x) = x^3$$

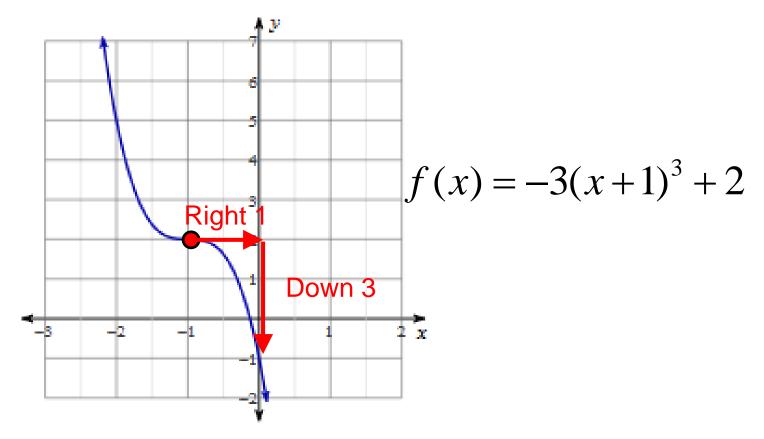
$$f(x) = \sqrt[3]{x}$$

$$y = (-1)a\sqrt{x-h} + k$$
$$y = (-1)a(x-h)^3 + k$$
$$y = (-1)a\sqrt[3]{x-h} + k$$









vertical stretch:3 reflection (x-axis)