Math-3
 Lesson 1-4

Cube, and Cubed Root Functions.

What is a power?

Power: An expression formed by repeated Multiplication of the same factor.

The base is used as a factor the exponent number of times.

$$
3^{*} x * x * x * x
$$

The Cube Function

$$
f(x)=x^{3}
$$

Build a table of values for each equation for domain elements: $-2,-1,0,1,2$.

$$
x=(-\infty, \infty)
$$

Range of the graph?

$$
y=(-\infty, \infty)
$$

$$
f(x)=x^{3}
$$

Inflection Point: the point where the shape of the graph changes from "concave down" (curving downward) to "concave up" (curving upward) or vice versa. Inflection point: $(0,0)$

Shape of the graph: Not vertically stretched: from the inflection point "right 1, up 1"

Left/right and up/down transformations

 move the inflection point (and the whole graph)Describe the transformations:
$f(x)=x^{3} \quad g(x)=-x^{3} \quad k(x)=\mathrm{x}^{3}+2$

Inflection point did not move.

Inflection point moved, shape did not change.

Describe the transformations of the parent function given by: $f(x)=x^{3}$

Inflection point did not move, shape is vertically stretched

Where is the inflection point?

$$
f(x)=x^{3} \quad \mathrm{j}(x)=(x+4)^{3}-2
$$

Inflection point moves left 4, down 2

Cubed Root (or 3 ${ }^{\text {rd }}$ root)

Index number
$x=\sqrt[3]{5}$ Some number equals the cubed root of 5 .
Use the property of equality to "cube" the left and right side of the equal sign results in an equivalent equation.

$$
\begin{gathered}
(x)^{3}=(\sqrt[3]{5})^{3} \\
x^{3}=5
\end{gathered}
$$

$\sqrt[3]{5}$ means "what number cubed equals 5 "

Cubed Root function: $f(x)=\sqrt[3]{x}$
Fill in the output values of the table,

x	y
-8	-2
-1	-1
0	0
1	1
8	2

Where is the inflection point? $\quad f(x)=\sqrt[3]{x}$

Not vertically stretched: "right 1, up 1"
From the inflection point
domain? All real numbers. range? All real numbers.

What is the transformation of the parent function?
$f(x)=\sqrt[3]{x} \quad \mathrm{k}(x)=-\sqrt[3]{x} \quad \mathrm{~g}(x)=-2+\sqrt[3]{x+4}$

Reflected(x-axis)

Left 4, down 2
Inflection point: (-4, -2)

$f(x)=\sqrt[3]{x}$

Graph the (without a calculator).

$f(x)=\sqrt{x}$
$f(x)=x^{3}$

$f(x)=\sqrt[3]{x}$

$$
\begin{aligned}
& y=(-1) a \sqrt{x-h}+k \\
& y=(-1) a(x-h)^{3}+k \\
& y=(-1) a \sqrt[3]{x-h}+k
\end{aligned}
$$

What is the equation of the graph?

What is the equation of the graph?

$$
\begin{aligned}
& \text { What is the equation of the graph? } \\
& \text { 业 }
\end{aligned}
$$

What is the equation of the graph?

