Math-3
 Lesson 1-3

The Absolute Value Function
And
The Square Root Function

Absolute Value Function

$$
f(x)=|x|
$$

Fill in the table, then graph the $x-y$ pairs.

x	y
-2	2
-1	1
0	0
1	1
2	2

$y=|-2|$
$|-2|$ means
"what is the
distance
between -2 and
zero?

Just like the Quadratic Function, the point $(0,0)$ is the vertex and there is a point in the position "right 1 , up 1 " (from the vertex).

Describe how each function transforms the "parent" $f(x)$.
$f(x)=x^{2}$

$j(x)=3 x^{2}$
$\mathrm{f}(\mathrm{x}) \mathrm{VSF}=3$

$\mathrm{f}(\mathrm{x})$ reflected across the x -axis

$$
\begin{aligned}
& \begin{array}{cc}
f(x)=|x| & g(x)=2|x| \\
\begin{array}{|c|c|}
\hline \mathrm{x} & \mathrm{y} \\
\hline-2 & 2 \\
\hline-1 & 1 \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline-2 & 4 \\
\hline-1 & 2 \\
\hline \hline 0 & 0 \\
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline
\end{array}
\end{array} \\
& \text { Multiplying the parent } \\
& \text { function by } 2 \text { makes each } \\
& y \text {-value of the parent } 2 \\
& \text { times as big; VSF = } 2 \\
& \text { What is the vertex? }
\end{aligned}
$$

What does adding or subtraction " k " do to the parent function?

$$
f(x)=|x|+k \uparrow
$$

Vertical shift (a distance of ' k ' units)

What does adding or subtraction " h " do to the parent function?

$$
f(x)=|x \overleftrightarrow{h}| \quad \text { Horizontal shift }
$$

What does multiplying by 'a' do to the parent
function?

$$
f(x)=\neq|x| \quad \text { Vertical stretch }
$$

What does multiplying by (-1) do to the parent function?

$$
f(x)=-|x| \text { Reflection (x-axis) }
$$

Square Root Function

$$
f(x)=\sqrt{x}
$$

Fill in the table, then graph the $x-y$ pairs

x	y	$y=\sqrt{x}$
9	3	
4	2	$y=\sqrt{4}=2$
1	1	$y=\sqrt{1}=1$
0	0	$y=\sqrt{0}=0$
-1	$? ?$	$y=\sqrt{-1}=i$

The square root of a negative number is an imaginary number and CANNOT be graphed on the REAL Plane.

We say inputs that cause the radicand of the function to be negative, have no corresponding output values.

Describe the transformations to the parent function:

$$
y=4+\sqrt{x+3} \quad y=\sqrt{x+3}+4
$$

Up 4, left 3
End point? $(-3,4)$

Domain and Range depend upon the endpoint and whether the graph has been reflected.

$$
\begin{aligned}
& \text { Domain? } \\
& x=[-3, \infty) \\
& \text { Range? } \\
& y=[4, \infty)
\end{aligned}
$$

Square Root Function (the top half of a sideways parabola)

Does the graph ever reach horizontal? never
Domain of the graph? $\quad x=[0, \infty)$
Range of the graph? $y=[0, \infty)$
Where is the function increasing? $f(x) \uparrow$ on: $y=[0, \infty)$
Where is the function decreasing? never
Where is the function positive? $f(x)>0$ on: $y=[0, \infty)$
Where is the function negative? never

```
Describe the transformations to the parent function: \(f(x)=\sqrt{x}\)
Where is the endpoint of the graph?
```

$$
\begin{array}{cc}
g(x)=\sqrt{x-2}+4 & g(x)=4+\sqrt{x-2} \\
\text { right } 2, \text { up 4 } & \text { Up 4, right } 2
\end{array}
$$

$$
\text { End point: }(2,4)
$$

$k(x)=-3-2 \sqrt{x+1}$ Left 1, down 3, reflected (x-axis), VSF-2 End point: (-1, -3)
$h(x)=-5+2 \sqrt{x} \quad$ Down 5, VSF-2
End point: (0, -5)
$j(x)=1-4 \sqrt{x+2} \quad$ Left 2, up 1, reflected (x-axis), VSF-4
End point: $(-2,1)$

Multiplying both the x-coordinate and y-coordinate of a point by (-1) causes the point to be reflected across the origin.

In general we say: $-f(-x)$ is a reflection of $f(x)$ across the origin.

$f(x)=\sqrt{x-2}$	$-f(x)$ is a reflection of $f(x)$ across the x-axis	$f(-x)$ is a reflection of $f(x)$ across the y-axis
What does the square root equation look like...	$g(x)=-\sqrt{x-2}$	$g(x)=\sqrt{-x-2}$
$-f(-x)$ is a reflection of $f(x)$ across the origin		$g(x)=\sqrt{-(x+2)}$

