Math-3 Lesson 1-2

Quadratic (Squaring) Function

Transformation: an adjustment made to the parent function that results in a change to the graph of the parent function.
Changes could include:
shifting ("translating") the graph up or down,
"translating" the graph left or right
vertical stretching

horizontal stretching

Reflecting across x-axis or y-axis

Squaring Function $f(x)=x^{2}$

Parent Function: The simplest function in a family of functions (linear, quadratic, cubic functions, etc.)

Using the input values and the "parent function" of the quadratic family, calculate the corresponding output values (fill in the table) and graph the points.

x	$\mathrm{f}(\mathrm{x})$	$f(x)=x^{2}$
-3	9	$f(-3)=(-3)^{2}$
-2	4	$\rightarrow f(-3)=9$
-1	1	
0	0	
1	1	
2	4	
3	9	

We say the function has been reflected across the x-axis.

$$
\begin{aligned}
& y=x^{2} \\
& \begin{array}{|c|l|}
\hline x & f(x) \\
\hline-2 & 4 \\
\hline-1 & 1 \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 4 \\
\hline
\end{array}
\end{aligned}
$$

Multiplying the parent function by -1 actually changes the sign of every y-value of the parent function.

$y=-x^{2}$

Fill in the $2^{\text {nd }}$ table.

$$
\begin{aligned}
& f(x)=x^{2} \\
& \begin{array}{|c|c|}
\hline x & f(x) \\
\hline-2 & 4 \\
\hline-1 & 1 \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 4 \\
\hline
\end{array}
\end{aligned}
$$

$$
g(x)=(x-1)^{2}
$$

x	$g(x)$
-2	9
-1	4
0	1
1	0
2	1
3	4

Replacing ' x ' in the parent function with ' $x-1$ ' causes the graph to translate right ' 1 '

Fill in the
second table.

$y=x^{2}$

x	y
-2	4
-1	1
0	0
1	1
2	4

$y=3 x^{2}$

x	y
-2	12
-1	3
0	0
1	3
2	12

For the same input values, the output values have been multiplied by 3 .

We say the function has been "vertically stretched" by a factor of 3 .

Let's generalize the transformations

$y=-2(x-3)^{2}+4 \quad$ Reflected across x-axis, VSF $=2$, right 3 , up 4
$y=3(x+5)^{2}-6 \quad \mathrm{VSF}=3$, left 5 , down 6

In order to graph the equation:

1) Move the vertex left/right and up/down
2) From the vertex move right 1 , then up/down by the VSF.

Your Turn:

Describe the transformation to the parent $y=x^{2}$ function:

$$
y=x^{2}-4 \quad \text { translated down } 4
$$

Describe the transformation to the parent

$$
y=x^{2}
$$ function:

$$
y=x^{2}+5 \quad \text { translated up } 5
$$

These effects accumulate

Describe the transformation to the parent function:
Reflected across x-axis and translated up 2

These effects accumulate	
Describe the graphical transformation to the parent function:	
Multiplying the parent function by 3 then subtracting $6 \ldots$	
Vertically stretched by a factor of 3 and translated down 6	$g(x)=3 x^{2}-6$

Let's generalize the transformations

$$
y=-2(x-3)^{2}+4
$$

Reflected across x-axis, twice as steep, translated up 4, translated right 3

Describe the transformation to the parent function:
$f(x)=x^{2}$

$\mathrm{k}(\mathrm{x})=2(x-1)^{2}$
$j(x)=-\frac{1}{2}(x+3)^{2}+4$
$\mathrm{VSF}=2$, right 1
Reflected across x-axis

Interpret the transformation then graph the function

What is the equation that has been graphed?

