SM3 HW\#6-8 (Applications of sinusoids)

\qquad
Using degrees, find the centerline, amplitude, period, and phase shift (left/right) of each function. Hint: separate the HSF from the left/right shift by factoring out the coefficient of $\boldsymbol{\theta}$

1) $y=\sin (8 \theta-300)$
2) $y=\frac{1}{3} \cdot \cos \left(\frac{\theta}{8}+30\right)$

Using radians, find the centerline, amplitude, period, and phase shift (left/right shift) of each function.
3) $y=\frac{1}{3} \cdot \cos \left(5 \theta+\frac{3 \pi}{4}\right)$
4) $y=3 \cos \left(\frac{\theta}{8}+\frac{\pi}{3}\right)$

Find the area of each triangle to the nearest tenth.
5)

Find each measurement indicated. Round your answers to the nearest tenth.
6) $m \angle C=151^{\circ}, b=13 \mathrm{~m}, c=33 \mathrm{~m}$

Find $m \angle B$

Find the measure of each angle indicated. Round to the nearest tenth.
7)

Find the measure of each side indicated. Round to the nearest tenth.
8)

9) $1 y d^{3}$ of soil containing 52% silt was mixed into $5 \mathrm{yd}^{3}$ of soil containing 40% silt. What is the silt content of the mixture?

Solve each equation.
10) $\log _{2}\left(x^{2}+3\right)-\log _{2} 6=1$
11) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 2 inches, (b) completes one cycle in 10 seconds, (c) disregard left/right shift, (d) use radians
12) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 4 inches, (b) completes one cycle in 12 seconds, (c) disregard left/right shift, (d) use degrees
13) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 4.7 inches, (b) completes 50 cycles per minute (careful: this is a frequency not a period), (c) disregard left/right shift, (d) use degrees, (e) have the input value be time in seconds
14) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 9.7 inches, (b) completes 5 cycles per second (careful: this is a frequency not a period), (c) disregard left/right shift, (d) use radians, (e) have the input value be time in seconds
15) A Ferris wheel has a diameter of 444 feet. The bottom of the Ferris Wheel is 3 feet off the ground. Once all of the cars (it's a big Ferris Wheel) are loaded it takes 80 seconds to complete one revolution. (This is a period!). Write an equation that predicts the height of the bottom of a car as a function of time. Disregard any left/right shift of the sine function. Use radians to determine ' b '. $h(t)=a \sin (b \cdot \theta)+k$
16) A Ferris wheel has a diameter of 26 meters. The bottom of the Ferris Wheel is 1 meter off the ground. Once all of the chairs are loaded it takes 12 seconds to complete one revolution. (This is a period!). Write an equation that predicts the height of the bottom of a chair as a function of time. Disregard any left/right shift of the sine function. Use degrees to determine ' b '. $h(t)=a \sin (b \cdot \theta)+k$

Use the given point on the terminal side of angle $\boldsymbol{\theta}$ to find the value of the trigonometric function indicated.

17) $\csc \theta$

18) $\sin \theta$

