\qquad Period \qquad

Write each expression in exponential form.

1) $\sqrt[3]{3 m^{2}}$

Simplify.

2) $x^{\frac{1}{3}} y^{2} \cdot 2 x^{\frac{2}{3}} y^{-\frac{1}{2}}$
3) $\sqrt{3}(4-4 \sqrt{3})$
4) a) Write the vertex form equation. (Show all of your work.)
b) Find the zeroes of the equation.
$y=x^{2}-8 x+1$
5) Write an equation of a line through:
$(4,-1)$ and $(-3,4)$
6) Simplify
$\frac{3 a}{4 a}-\frac{3 a}{4 a b}$
7) Simplify
$\frac{16}{5 x}$
$\frac{x}{25}$
8) 12 qt. of a 28% acid solution was mixed with 6 qt . of a 58% acid solution. Find the concentration of the new mixture.
9) $f(x)=\frac{3 x+1}{x-2}$
a) Wrtie the equation as the reciprocal function.
b) Vertical Asymptote?
c) Horizontal Asymptote?
d) x-intercept?
e) y-intercept?
10) $g(x)=\frac{2 x}{x+3}+1$

$$
g^{-1}(x)=?
$$

11) Write the eqaution for the graph. The graph passes through the ordered pairs (0 , $3)$ and ($-1,9$)

12) a) Describe the transformation of the parent function $y=\left(\frac{1}{4}\right)^{x}$ given by the equaiton $g(x)=3 \cdot 2^{x}-4$
b) what is the horizontal asymptote?
c) what is the domain?
d) what is the range?
e) What is the "growth factor"?
f) what is the y-intercept?
$\mathrm{g})$ is the function "growth" or "decay"?
13) Solve. Show either your table or a graph with signs ($+/-$), then write the solution in interval notation:
$-3 x^{2}(x-1)(x+3)(x-4)<0$
14) Solve:
$\frac{1}{x}-\frac{x-6}{x}=4$
a) Identify the domain
b) Identify the range.
c) Vertical Asymptote
d) Describe how it is a tranformation of its parent function.
15) $y=3 \log _{5}(x-2)+4$

Find the inverse of each function.
16) $y=\log _{3} x^{4}$
17) $y=5^{x}-8$

Expand each logarithm.
18) $\log _{4} \frac{x}{y^{2}}$
19) $\log _{3}\left(z^{2} \sqrt{x \cdot y}\right)$

Condense each expression to a single logarithm.
20) $\log _{7} x-\log _{7} y$
21) $\log _{9} u+5 \log _{9} v$

Identify the domain and range of each.
22) $y=\log _{6}(2 x-1)+5$
23) Rewrite in exponential form. $\log _{2}(2 x-3)=4$
24) Rewrite in logarithmic form.
$3^{x}=12$

Solve each equation. Remember to check for extraneous solutions.
25) $\sqrt{-1-2 x}=x$

Solve each equation.
26) $6^{-2 a}=6^{-3 a-2}$
27) $4^{x}=64^{3 x}$

Solve. Round your answers to the nearest thousandth.
28) $15^{-9 r}-5=92$

Solve each equation.

29) $\log (-7 n+2)=\log \left(n^{2}+2\right)$
30) $\log _{2} 5-\log _{2} x=4$
31) $\log _{7}(x-9)=2$
32) Suppose that you test some juice and find that the hydrogen ion concentration is $\mathrm{H}+=0.00043$ moles/li. Find the pH value and determine whether the juice is basic or acidic. (If $\mathrm{pH}>7$ it is basic).
33) What is the $\mathrm{H}+$ concentration if the measured $\mathrm{pH}=7.5$? Write your answer in scientific notation.
34) Find the time required for an investment of $\$ 100$ to double if the money is placed in a simple interest account (compounded once per year) that earns 4.5% interest.
35) If you put $\$ 1500$ into an interest bearing account that pays 2.75% interest compounded continuously, how long will it take for the money to grow to $\$ 2500$?
36) The front row of a rock concert has a sound intensity of 3.5×10^{2} watts $/ \mathrm{m}^{2}$.

How loud is the sound in decibels? (they need to turn the volume down or you will go deaf!)
37) What is the sound intensity of a hawk in flight that makes 8 dB of sound?
38) NUAMESium-19 decays to WSUim-21. The half life of NUAMESium-19 is 180 days. Write a base 'e' exponential equation that predicts the amount of NUAMESium as a function for time. Assume the initial amount is 200.
39) Assuming the intial amount is 50 , the decay equation for USUium- 23 is: $A(t)=50 \cdot 0.92^{x}$ Rewrite this equation as a base e exponential function.
40) A pizza was cooked in an oven at 425 degrees Fahrenheit. The pizza was removed from the oven and placed on the counter in a room that was at 75 degrees. After 10 minutes the temperature of the cake was 200 degrees.
a) Find the equation that models this situation using: $T(t)=A B^{t}+k$
b) Convert this equation to a base 'e' exponential equation of the form: $T(t)=A e^{k t}+m$
c) How long will it take to cool to 105 degrees?

