Write each expression in exponential form.

1)  $\sqrt[3]{3m^2}$ 

Simplify.

- 3)  $\sqrt{3}(4-4\sqrt{3})$ 2)  $x^{\frac{1}{3}}y^{2} \cdot 2x^{\frac{2}{3}}y^{-\frac{1}{2}}$
- 4) a) Write the vertex form equation. (Show all of your work.) b) Find the zeroes of the equation.
  - $v = x^2 8x + 1$
- 5) Write an equation of a line through: 6) Simplify (4, -1) and (-3, 4)3*a* 4a

- 7) Simplify 16 5*x* 
  - $\frac{x}{25}$

8) 12 qt. of a 28% acid solution was mixed with 6 qt. of a 58% acid solution. Find the concentration of the new mixture.

- 9)  $f(x) = \frac{3x+1}{x-2}$ 
  - a) Wrtie the equation as the reciprocal function. b) Vertical Asymptote? c) Horizontal Asymptote?
  - d) x-intercept?
  - e) y-intercept?

10) 
$$g(x) = \frac{2x}{x+3} + 1$$
  
 $g^{-1}(x) = ?$ 

3a

4ab

11) Write the eqaution for the graph. The graph passes through the ordered pairs (0, 3) and (-1, 9)

12) Solve:  $\frac{1}{x} - \frac{x-6}{x} = 4$ 



- 13) a) Describe the transformation of the parent function  $y = \left(\frac{1}{4}\right)^x$  given by the equaiton  $g(x) = 3 \cdot 2^x - 4$ 
  - b) what is the horizontal asymptote?
  - c) what is the domain?
  - d) what is the range?
  - e) What is the "growth factor"?
  - f) what is the y-intercept?
  - g) is the function "growth" or "decay"?
- 14) Solve. Show either your table or a graph with signs (+/-), then write the solution in interval notation:

$$-3x^{2}(x-1)(x+3)(x-4) < 0$$

~ /

a) Identify the domainb) Identify the range.c) Vertical Asymptoted) Describe how it is a tranformation of its parent function.

15) 
$$y = 3 \log_5 (x - 2) + 4$$

## Find the inverse of each function.

16) 
$$y = \log_3 x^4$$
 17)  $y = 5^x - 8$ 

# Expand each logarithm.

18) 
$$\log_4 \frac{x}{y^2}$$
 19)  $\log_3 \left( z^2 \sqrt{x \cdot y} \right)$ 

### Condense each expression to a single logarithm.

20)  $\log_7 x - \log_7 y$  21)  $\log_9 u + 5 \log_9 v$ 

#### Identify the domain and range of each.

- 22)  $y = \log_6 (2x 1) + 5$  $\log_2 (2x - 3) = 4$ 23) Rewrite in exponential form.
- 24) Rewrite in logarithmic form.  $3^x = 12$

# Solve each equation. Remember to check for extraneous solutions.

 $25) \quad \sqrt{-1 - 2x} = x$ 

## Solve each equation.

$$26) \ 6^{-2a} = 6^{-3a-2}$$

27)  $4^x = 64^{3x}$ 

### Solve. Round your answers to the nearest thousandth.

28)  $15^{-9r} - 5 = 92$ 

Solve each equation.

29)  $\log (-7n+2) = \log (n^2+2)$  30)  $\log_2 5 - \log_2 x = 4$ 

31)  $\log_7 (x-9) = 2$ 

- 32) Suppose that you test some juice and find that the hydrogen ion concentration is  $H^+ = 0.00043$  moles/li. Find the pH value and determine whether the juice is basic or acidic. (If pH > 7 it is basic).
- 33) What is the H+ concentration if the measured pH = 7.5? Write your answer in scientific notation.
- 34) Find the time required for an investment of \$100 to double if the money is placed in a simple interest account (compounded once per year) that earns 4.5% interest.
- 35) If you put \$1500 into an interest bearing account that pays 2.75% interest compounded continuously, how long will it take for the money to grow to \$2500?

- 36) The front row of a rock concert has a sound intensity of  $3.5 \times 10^2$  watts/ $m^2$ . How loud is the sound in decibels? (they need to turn the volume down or you will go deaf!)
- 37) What is the sound intensity of a hawk in flight that makes 8 dB of sound?
- 38) NUAMESium-19 decays to WSUim-21. The half life of NUAMESium-19 is 180 days. Write a base 'e' exponential equation that predicts the amount of NUAMESium as a function for time. Assume the initial amount is 200.
- 39) Assuming the initial amount is 50, the decay equation for USUium-23 is:  $A(t) = 50 \cdot 0.92^{x}$ Rewrite this equation as a base e exponential function.
- 40) A pizza was cooked in an oven at 425 degrees Fahrenheit. The pizza was removed from the oven and placed on the counter in a room that was at 75 degrees. After 10 minutes the temperature of the cake was 200 degrees.

a) Find the equation that models this situation using:  $T(t) = AB^{t} + k$ 

b) Convert this equation to a base 'e' exponential equation of the form:  $T(t) = Ae^{kt} + m$ 

c) How long will it take to cool to 105 degrees?