© 2019 Kuta Software LLC. All rights reserved.

Math-3 HW #4-4 (solve quadratic inequalities)

Date_____ Period___

Solve each compound inequality and write its solution as

- a) simplified inequality
- b) graph
- c) Interval notation.

1)
$$\frac{x}{5} \le 0$$
 or $8x > 56$

2)
$$10 + b < 16$$
 and $10b > -50$

3)
$$n + 9 < 14$$
 or $10n > 60$

- 5) Solve using "boundary numbers method". Give the solution as a:
 - a) graph
 - b) simplified inequality
 - c) interval

$$(x-5)(x-1) > 0$$

6) Solve using "boundary numbers method".

Give the solution as a:

- a) graph
- b) simplified inequality
- c) interva

$$(r+7)(7r-2) \le 0$$

- 7) a) Write in factored form
 - b) Solve; Write the solution as an interval

$$2x^2 + 15x + 27 \ge 0$$

- 8) a) Write in factored form
 - b) solve; write the solution as an interval

$$x^2 - 17x + 16 < 0$$

9) Solve (answer as an interval)
$$0 > x^2 + 7x + 10$$

10) Solve (answer as an interval)
$$x^2 - 10x + 21 \ge 0$$

Find the "zeroes" of the equations by finding square roots.

11)
$$n^2 - 5 = 0$$

12) a) Write the equation in factored form b) find the zeroes of the equation
$$y = 2x^2 + 3x - 2$$

Solve the equation.

13)
$$x^2 + 8x + 1 = 0$$

14)
$$x^2 + 14x - 18 = 0$$

Perform the indicated operation.

15)
$$h(x) = -2x^2 + 4x$$

 $g(x) = 2x + 4$
Find $(-4h - g)(x)$

16)
$$g(n) = n^2 + 2$$

 $h(n) = n + 5$
Find $(g \circ h)(-9)$

Find the inverse of each function.

17)
$$g(x) = \frac{3x}{x+1} - 2$$

18)
$$g(n) = \frac{1}{-n-2} + 1$$