

$$
\begin{aligned}
& \text { volume }_{\text {prism }}=(\text { area of base }) * \mathrm{~h} \\
& \text { volume }_{\text {rectangular pyramid }}=\frac{1}{3}(\text { base area }) h
\end{aligned}
$$

volume $_{\text {cylinder }}=($ area base $) * h$

volume $_{\text {cone }}=\frac{1}{3}($ area base $) * h$surf. area ${ }_{\text {sphere }}=4 \pi \mathrm{r}^{2}$
volume $_{\text {sphere }}=\frac{1}{3} * 4 \pi \mathrm{r}^{3}$
$x^{2}+y^{2}=25$ Has not been shifted left/right \rightarrow center is $\underline{(0,0)}$.
$(x+3)^{2}+y^{2}=25 \quad$ Left 3 shift \rightarrow center is $(-3,0)$
$(x-5)^{2}+(y+2)^{2}=25 \quad$ center is $(5,-2)$
What is the radius of the circle? $\quad x^{2}+y^{2}=25$

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \quad \text { radius is } 5 \\
(x-7)^{2}+y^{2}=49 \quad \text { radius is } 7 \\
(x+2)^{2}+y^{2}=64 \quad \text { radius is } 8
\end{gathered}
$$

What is the center and radius of the circle?:

$$
x^{2}+y^{2}-6 x+8 y=0
$$

Complete the square!

$$
\begin{gathered}
x^{2}-6 x+9+\sqrt{2}+8 y+16^{2}=0+9+16 \\
(x-3)^{2}-9+(y+4)^{2}-16=0
\end{gathered}
$$

Convert "perfect square trinomials" to "binomials squared then simplify.

$$
(x-3)^{2}+(y+4)^{2}=25
$$

$$
(h, k)=(3,-4) \quad \mathrm{r}=5
$$

Find the boundary numbers: solve the equation:
-3 and 3 divide the solution from the "non-solution."
The solution is one of the two graphs below.

Pick an easy number to test.
$(0)^{2}-9>0$
Zero IS NOT a solution, the top graph is the solution.

Problem solving using similar triangles.

Solve using a proportion
$\frac{x}{1}=\frac{\sqrt{5}}{2}$

$$
y=\sqrt{3} * \frac{\sqrt{5}}{2}
$$

$$
y=\frac{\sqrt{15}}{2}
$$

