Math-3 Handout 6-3

A typical co-terminal angle problem: Find a positive and negative angle that is co-terminal with

$$
m \angle \theta=240 \quad m \angle \theta=-100
$$

$\tan \theta=1 / 5 \quad \theta=?$

Draw and label a right triangle:

$$
\sec \theta=5 / 2 \quad \theta=?
$$

Draw and label a right triangle:

$\tan \theta=4 / 9 \quad \cos \theta=?$
Draw and label a right triangle:

$$
\sec \theta=4 / 9 \quad \csc \theta=?
$$

Draw and label a right triangle:

What is the sine ratio of a standard position angle whose terminal side passes through the point $(2,7)$?

What is measure of the angle?

What is the cosine ratio of an angle whose terminal side passes through the point $(-1,3)$?

What is measure of the reference angle?

What is measure of the std. position angle?

What is the sine ratio of an angle whose terminal side passes through the point $(4,-3)$?

What is measure of the reference angle?

What is measure of the std. position angle?

Convert between radians and degrees using a "proportion".

$$
\frac{\text { angle }_{\text {degrees }}}{360}=\frac{\text { angle }_{\text {radians }}}{2 \pi}
$$

3
${ }_{8} \pi$
125°
$\frac{\text { part }}{\text { whole }_{\text {(arc lengths) }}}=\frac{\text { part }}{\text { whole }_{\text {(angles) }}}$

$$
\frac{\mathrm{s}}{2 * \pi * \mathrm{r}}=\frac{\theta}{360 \text { or } 2 \pi}
$$

Find the length of the subtended arc.

$30^{\circ} *\left(\frac{\pi}{180^{\circ}}\right)=\left(\frac{30^{\circ} \pi}{180^{\circ}}\right) \quad \begin{aligned} & \text { Label each standard position angle } \\ & \text { measure in radians. }\end{aligned}$
$30^{\circ}=\frac{\pi}{6}$

$45^{\circ} *\left(\frac{\pi}{180^{\circ}}\right)=\left(\frac{45^{\circ} \pi}{180^{\circ}}\right) \quad \begin{aligned} & \text { Label each standard position angle } \\ & \text { measure in radians. }\end{aligned}$
$45^{\circ}=\frac{\pi}{4}$

$$
90^{\circ} *\left(\frac{\pi}{180^{\circ}}\right)=\left(\frac{90^{\circ} \pi}{180^{\circ}}\right) \quad \begin{aligned}
& \text { Label each standard position angle } \\
& \text { measure in radians. } \\
& 90^{\circ}=\frac{\pi}{2}
\end{aligned}
$$

