SM3 HANDOUT 5-4 (The Logarithm Function)

Exponential
Function

$f(x)=10^{x}$
Domain $=$? \square
Range $=$?
asymptote $=$? \square
\square

Inverse
Functions

Logarithm
Function

Domain $=$? \square
Range $=$?
asymptote $=$?

Transformations of the Log Function

$$
f(x)=\log x
$$

Domain $=$? $(0, \infty)$
Range $=? \quad(-\infty, \infty)$
vertical asymptote = ?

$$
x=0
$$

X -intercept $=$?

$$
x=1
$$

Where increasing = ?

$$
(0, \infty)
$$

$g(x)=\log (x-1)$
Right 1 shift
Domain $=$?

$$
\begin{aligned}
& \text { Range }=? \\
& \text { asymptote }=\text { ? }
\end{aligned}
$$

Evaluating Logs on your calculator

$\log 8=$?

Push buttons:

Push buttons:

$$
\log 0=? \quad \text { error Why? }
$$

$\ln 10=$?

$$
\log (-3)=\text { ? error Why? }
$$

Transformations of the Log Function

$$
\begin{gathered}
f(x)=\log x \\
g(x)=2 \log (x+1)-3
\end{gathered}
$$

Domain $=$?

\square
Range $=$? \square
Asymptote $=$?
$f(x)=\log x$
$g(x)=-3 \log (x-2)+1$

Range $=$? \square
Asymptote $=$?
NOT exponential (has a vertical asymptote, does NOT have a horizontal asymptote.

$\log _{\square}^{\square}=\square$

What is the solution?

$$
\square^{\square}=\square \quad \log \square=\square
$$

Convert to exponential form
What is the solution?

What is the base?

$\log _{2} 8=x$

$\ln 5=x$

$\log 20=x$

What is the Solution?

$$
\begin{array}{ll}
\frac{1}{100}=\log _{10}(x) & \square \\
x=\log _{2} \sqrt{2} & \square \\
x=\log _{5} \frac{1}{\sqrt[3]{5}} & \square
\end{array}
$$

Estimate the value of the log: $\log _{2} 17$

Find $\log _{2} 17$ on your calculator. $\quad \log _{2} 17=4.09$

Estimate the value of the log (without using your calculator)

$$
\log _{3} 30 \quad \log _{5} 30 \quad \log _{6} 30
$$

Find the Inverse $\quad f^{-1}(x)=$?

$$
f(x)=(3)^{x-1}+2
$$

$$
f(x)=2 \log _{2}(x+1)
$$

Finding the Inverse $f^{-1}(x)=$?

$$
f(x)=2 \log _{2}(x+1)
$$

