Math-3
 Lesson 3-8
 Solve Rational Equations

Solution to an equation: the value of the variables or unknown value that makes the equation "true".

Equivalent equation: has the same solution as the original equation:

$$
4 x+2=10 \quad 4 x=8
$$

The solution to both equations is $x=2$.

They are equivalent equations.

Solving Rational Equations

Method \#1: Obtain common denominators for each term
Method \#2: Determine what the common denominator would be then multiply by that value.

What does solve a single variable equation mean?

$$
3 x+2=11
$$

Find the value of the variable that makes the equation "true."

What is a factor?
A number that is being multiplied by another number.

Method 1: Obtain a common denominator

$$
(4 x+5)^{*}{ }_{(4 x+5)}^{*} \frac{3}{x+1}=\frac{9}{4 x+5} \quad{ }^{*}(x+1)
$$

Multiply both sides by the common denominator
$(4 x+5)(x+1) \frac{3(4 x+5)}{(4 x+5)(x+1)}=\frac{9(x+1)(4 x+5)(x+1)}{(4 x+5)(x+1)}$
Solve: $\quad 3(4 x+5)=9(x+1)$

$$
x=-2
$$

Identify the excluded value then solve.
$\frac{(x+2)}{(x+2)} * \frac{9}{5}=\frac{4}{x+2} \quad * \frac{5}{5}$

$$
x \neq-2
$$

$$
\begin{array}{rr}
\frac{5(x+2)}{1} * \frac{9(x+2)}{5(x+2)}=\frac{20}{5(x+2)} * \frac{5(x+2)}{1} \\
\begin{array}{rr}
9(x+2) & =20 \\
9 x+18 & =20 \\
-18 & -18
\end{array} & \div 9=2 \\
& x=\frac{2}{9}
\end{array}
$$

Identify the excluded value then solve.

$$
\frac{x}{3}+1=\frac{2}{x+1}
$$

$$
\frac{(x+1)}{(x+1)} * \frac{x}{3}+1 * \frac{3(x+1)}{3(x+1)}=\frac{5}{x+1} * \frac{3}{3}
$$

$$
\frac{x(x+1)}{3(x+1)}+\frac{3(x+1)}{3(x+1)}=\frac{15}{3(x+1)}
$$

$$
x(x+1)+3(x+1)=15 \quad(x+6)(x-2)=0
$$

$$
x^{2}+x+3 x+3=15
$$

$$
x=-6,2
$$

$$
x^{2}+4 x-12=0
$$

Sometimes it's easier to just "undo" division by ' x '.
$\frac{4}{x}+x=5 \quad x \neq 1 \quad \mathrm{x}^{*}\left(\frac{4}{x}+x\right)=5{ }^{*} \mathrm{x}$
$4+x^{2}=5 x \quad$ Non-standard quadratic equation.
Put into standard form !!!
$x^{2}-5 x+4=0$
$(x-4)(x-1)=0$

$$
x=4
$$

$$
x=1
$$

$$
\begin{aligned}
& 1+\frac{8}{x-5}=-\frac{9}{x} \quad x \neq 0,5 \\
& \frac{x(x-5)}{x(x-5)} * 1+\frac{8}{x-5} * \frac{x}{x}=-\frac{9}{x} * \frac{(x-5)}{(x-5)}
\end{aligned}
$$

$$
\begin{gathered}
\frac{x(x-5)}{1} * \frac{x(x-5)+8 x}{x(x-5)}=\frac{-9(x-5)}{\bar{x}(x-5)} \quad * \frac{x(x<5)}{1} \\
x(x-5)+8 x=-9(x-5) \quad(x+6)(x-2)=0 \\
x^{2}-5 x+8 x=-9 x+45 \\
x^{2}+12 x-45=0 \\
(x+15)(x-3)=0 \\
x=-15,3
\end{gathered}
$$

Neither solution is an excluded value!

Extraneous Solution: a solution obtained algebraically that is not in the domain of the original equation.

$$
\begin{gathered}
\frac{2 x}{x-3}+1=\frac{x^{2}-x}{x-3} \frac{\text { What are the excluded values? }}{x \neq 3} \\
\frac{2 x}{x-3}+\frac{1}{1} * \frac{(x-3)}{(x-3)}=\frac{x^{2}-x}{x-3}
\end{gathered}
$$

$$
\frac{(x-3)}{1}+\frac{2 x+(x-3)}{(x-3)}=\frac{x^{2}-x}{(x-3)} * \frac{x(x-3)}{1}
$$

$$
\begin{array}{lc}
2 x+(x-3)=x^{2}-x & 0=(x-3)(x-1) \\
0=x^{2}-4 x+3 & x=3,1
\end{array}
$$

$$
x=3 \text { is an excluded value! }
$$

$$
\frac{1}{2 x}=\frac{1}{6}+\frac{x^{2}-x-12}{6 x^{2}}
$$

$$
\begin{aligned}
& \quad x=1 \pm \sqrt{7} \\
& \text { neither are excluded values }
\end{aligned}
$$

$\frac{1}{x^{2}}=\frac{1}{4 x^{2}}-\frac{x+3}{4 x^{2}}$

Method \#2: Multiply by the "brute force" common denominator

$$
\begin{gathered}
\frac{1}{x}=\frac{1}{5}+\frac{1}{4} \\
\frac{5 * 4 * \not x}{1} * \frac{1}{\chi}=\frac{\boxed{4 * 4 * x}}{1} * \frac{1}{5}+\frac{1}{4} * \frac{5 * \nmid * x}{1} \\
20=4 x+5 x \\
20=9 x \\
x=\frac{20}{9}
\end{gathered}
$$

