SM3-A VOCABULARY 3-1 (Analyzing Polynomials)

Polynomial: An equation (or an expression) with same-base powers being added that are raised to a natural number exponent.

$$
\text { Example: } \quad y=8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3
$$

Not a polynomial $y=x^{0.5}+3 x^{2 / 3}+6 \sqrt{x}$

Lead coefficient: the coefficient of the largest power.

$$
y=-8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3
$$

Degree: the largest exponent of the polynomial.
Standard Form Polynomial A polynomial ordered so that the exponents get smaller from the left-most term to the right-most term. $y=8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3$

Term: powers (or the constant) separated by either a ' + ' or ' - ' symbol.
Number of terms: If all terms are present, a $\underline{2}^{\text {nd }}$ degree polynomial as $\underline{3 \text { terms }}$ in standard form.

$$
y=2 x^{2}-4 x+5
$$

If you include the number zero as a possible coefficient, an " n -th degree polynomial has $\mathrm{n}+1$
terms (i.e., a $3^{\text {rd }}$ degree has 4 terms). $y=4 x^{3}+0 x^{2}-4 x+5$
Intercept Form Polynomial A polynomial that has been factored into linear factors, from which you can identify the input values that make the output value equal to zero.

$$
\text { Example: } \quad y=6(x+4)(x+3)(x-2 i)(x+2 i)
$$

Linear factors: the exponent of the power is a ' 1 '.
Why do we call these linear factors?
$y=m x+b$ The linear equation is a $1^{\text {st }}$ degree polynomial so $(x+2)$ is a linear factor

Solve by factoring: If the equation has only one variable ('y' has already been set to zero), solve by factoring means to convert a standard form polynomial into intercept form (by factoring) and then identifying the zeroes of the polynomial. $y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48$

$$
\begin{gathered}
0=6(x+4)(x+3)(x-2 i)(x+2 i) \\
x=-4 \quad x=-3 \quad x=2 i \quad x=-2 i
\end{gathered}
$$

Find the zeroes: means that the equation has two variables. $1^{\text {st }}$ step: set $y=0$, then solve by factoring.
If the polynomial is already in intercept form: "solve by factoring " means just find the zeroes.

$$
\begin{aligned}
& 0=(x+5)(x-2)(x-\sqrt{3})(x+\sqrt{3}) \\
& x=-5 \quad x=2 \quad x=\sqrt{3} \quad x=-\sqrt{3}
\end{aligned}
$$

The "end behavior" of a function means: "on the right end of the graph is the y-value going UP or DOWN? And "on the left end of the graph, is the y-value going UP or DOWN?

$$
f(x)=(x-2)^{2}
$$

In English we could say: "up on right, up on left"
As ' x ' gets bigger (right end) ' y ' gets bigger (goes upward)
As ' x ' gets smaller (left end), ' y ' gets bigger (goes upward)

