SM3-A THEOREMS 3-1 (Analyze Polynomials)

<u>Fundamental Theorem of Algebra</u>: If a polynomial has a degree of "n", then the polynomial has "n" zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$y = 6x^{4} + 42x^{3} + 96x^{2} + 28x + 48$$

$$y = 6(x+4)(x+3)(x-2i)(x+2i)$$

$$x = -4, -3, 2i, -2i$$

'4th Degree" \rightarrow 4 zeroes (either real and/or imaginary)

How can you tell if there are zeroes that are multiplicities?

$$y = 3(x-2)^{3}(x+4)^{2}(x-\sqrt{5})(x+\sqrt{5})(x-3i)(x+3i)$$

(x-2)³ \rightarrow (x-2)(x-2)(x-2) x = 2 (multiplicity 3)
(x+4)^{2} \rightarrow (x+4)(x+4) x = 4 (multiplicity 2)
(x- $\sqrt{5}$)(x+ $\sqrt{5}$)(x-3i)(x+3i) 4 single multiplicity zeroes

Linear Factorization Theorem: If a polynomial has a degree of "n", then the polynomial can be factored into "n" linear factors.

$$y = 6x^4 + 42x^3 + 96x^2 + 28x + 48$$
 $\rightarrow y = 6(x+4)(x+3)(x-2i)(x+2i)$

**Since each linear factor has one zero, these two theorems are almost saying the same thing.

<u>Complex Conjugates Theorem</u> If f(x) is a polynomial and if (x + bi) is a factor (-bi is a zero) then its complex conjugate, (x - bi) is <u>also</u> a factor (and +bi is a zero) of f(x).

Example:
$$0 = x^2 + 4 \rightarrow 0 = (x - 2i)(x + 2i)$$

x = 2i, x = 2i

Example: $0 = x^4 + 5x^3 + 13x^2 + 45x + 36$ 0 = (x + 4)(x + 1)(x - 3i)(x + 3i)x = -4, -1, 3i, -3i

<u>Irrational Roots Theorem</u> If f(x) is a polynomial and if $(x - \sqrt{b})$ is a factor of the polynomial ($\rightarrow \sqrt{b}$ is a zero) then its irrational conjugate $(x + \sqrt{b})$ is also a factor of the polynomial ($\rightarrow \sqrt{b}$ is also a zero).

Example:
$$0 = x^2 - 3 \rightarrow 0 = (x - \sqrt{3})(x + \sqrt{3})$$

 $x = \sqrt{3}, -\sqrt{3}$
Example: $0 = x^4 - x^2 - 20 \rightarrow 0 = (x + 2i)(x - 2i)(x - \sqrt{5})(x + \sqrt{5})$
 $x = -2i, 2i, \sqrt{5}, -\sqrt{5}$