SM3-A: Properties 7-1 (exponents)

Multiply Powers Property: when you multiply same-based powers, you add the exponents.

$$
\left(x^{2}\right)\left(x^{3}\right)=(x * x)\left(x^{*} x * x\right)=x^{5} \quad x^{2} x^{3}=x^{2+3}=x^{5}
$$

Exponent of a Power Property: a power (base and an exponent) that has another exponent $\left(x^{2}\right)^{3}$ is simplify by multiplying the exponents

$$
\left(x^{2}\right)^{3}=\left(x^{*} x\right)\left(x^{*} x\right)\left(x^{*} x\right)=x^{2 * 3}=x^{6}
$$

Exponent of a Product Property: (an exponent of two or more different-based powers that are being multiplied together) is simplified by multiplying the exponent outside of the parentheses by each of the exponents inside of the parentheses. $\left(x y^{3}\right)^{2}=\left(x y^{3}\right)\left(x y^{3}\right)=x x y^{3} y^{3}=x^{2} y^{6}$

$$
\left(x^{2} y^{3}\right)^{4}=x^{2 * 4} y^{3 * 4}=x^{8} y^{12}
$$

This makes it seem that there is a "distributive property of exponents" $\rightarrow \underline{\text { there is NOT. }}$

$$
\begin{gathered}
(x+y)^{2} \neq x^{2}+y^{2} \\
(x+y)^{2}=x^{2}+2 x y+y^{2}
\end{gathered}
$$

