Math-3A

Lesson 8-5 Logarithmic and Exponential Modeling

Rewrite the following numbers as a power of "e"

2
$$e^x = 2$$
 $x = \ln 2$ $e^{0.693} \approx 2$

$$1.05 \quad \approx e^{0.049}$$

$$0.98 \quad \thickapprox e^{-0.020}$$

$$0.5 \quad \approx e^{-0.693}$$

-3 Not possible: Why? ln(-3) doesn't exist

We can rewrite the base of any exponential as a power of 'e'.

$$y = e^{kx}$$
$$e^{0.693} \approx 2$$
$$v = e^{0.693x}$$

 $k = \ln 2$ $k \approx 0.693$

Rewrite the following as base 'e' exponential equations.

$$y = 4^{x} = e^{1.386x}$$
$$y = 1.1^{x} = e^{0.095x}$$
$$y = 1.01^{x} = e^{0.010x}$$
$$y = 0.85^{x} = e^{-0.163x}$$
$$y = 0.25^{x} = e^{-1.386x}$$

How can you distinguish between growth and decay for...

A base "b" exponential? $y = b^{x}$ 0 < b < 1 decay b > 1 growth

A base "e" exponential?

$$y = e^{kx}$$

$$k < 0$$
decay

|k > 0| | growth

$$T(t) = a(b)^{t} + k$$

1) Horizontal Asymptote
$$T(t) = a(b)^{t} + 15$$

2) <u>y-intercept</u>

$$100 = a(b)^0 + 15$$

a = 85

3) <u>"nice point"</u>

 $50 = 85(b)^9 + 15$

Boiling water (100° C) is taken off the stove to cool in a room at 15° C. After 9 minutes, the water's temperature is 50 C.

Write the modeling equation as a base 'b' exponential.

$$\left(\frac{50 - 15}{85}\right) = (b)^9$$
$$\left(\frac{50 - 15}{85}\right)^{1/9} = b$$
$$b = 0.906$$

4) Final equation

$$T(t) = 85(0.906)^t + 15$$

Boiling water (100° C) is taken off the stove to cool in a room at 15° C. After 9 minutes, the water's temperature is 50 C.

Write the modeling equation as a base 'e' exponential.

$$T(t) = 85(0.906)^t + 15$$

$$e^{k} = 0.906$$

ln 0.906 = k

$$k = -0.0987$$

 $T(t) = 85e^{-0.0987t} + 15$

A hard-boiled egg at temperature 212° F is placed in 60° F water to cool. 5 minutes later the temperature of the egg is 95° F. When will the egg be 75° C?

A cake taken out of the oven at temperature of 350° F. It is placed on in a room with an ambient temperature of 70° F to cool. Ten minutes later the temperature of the cake is 150° F. When will the cake be cool enough to put the frosting on (90° F) ?

Sound Intensity: the rate that energy is deposited on a surface by sound. $\underbrace{Energy}_{time}$ Unit of measure: $\frac{watt}{m^2}$

Lowest measureable sound intensity: 10^{-12} w/m²

Sound intensity that causes pain: 10 w/m^2 10 is 1 trillion times larger than 10^{-12}

What is the sound intensity of?

Threshold of hearing	10^{-12} w/m ²	0.00000000001
breathing	$10^{-9.5}$ w/m ²	0.000000003
Threshold of pain	10^{0} w/m^{2}	1.0
Firecracker by ear	10^{5} w/m^{2}	100,000.
Pistol by ear	10^{6} w/m^{2}	1,000,000.

These numbers <u>don't give us a good "feel</u>" for loudness.

So we use something more useful: "Loudness".

Have you heard of "dB" (decibels)?

The logarand is the ratio of the actual sound intensity compared to the minimum detectable sound intensity

Don't freak out! This is just a <u>simple log equation</u>. But you must be able to handle properties of exponents!

What is the sound intensity of?

Threshold of hearing	10^{-12} w/m^2	O dB
breathing	$10^{-9.5}$ w/m ²	25 dB
Threshold of pain	10^{0} w/m^{2}	120 dB
Firecracker by ear	10^{5} w/m^{2}	170 dB
Pistol by ear	10^{6} w/m^{2}	180 dB

Which units are easier?

The sound intensity values aren't nearly as useful as the decibel values.

$$L(I) = 10\log\frac{I}{10^{-12}}$$

An ambulance has a sound intensity of 10° watts/sq meter

How Loud is the ambulance? (in decibels)

$$L(I) = 10\log\left(\frac{10^{\circ}}{10^{-12}}\right)$$
 Properties of exponents!!!

 $=10\log 10^{0-(-12)}$

 $=10\log 10^{12}$ =10*12=120db

$$L(I) = 10\log\frac{I}{10^{-12}}$$

The front row of a rock concert has a sound intensity of $I = 10^{-1}$ watts/meter²

What is the sound level in decibels on the front row of the rock concert?

$$L = 10\log \frac{10^{-1}}{10^{-12}} = 10\log 10^{11}$$
$$= 110\log 10$$
$$= 110\log 10$$

Rate: ratio of quantities

<u>concentration</u>: amount of a specific material compared to the total volume. amount volume

Unit of measure: <u>moles</u>

Lowest measurable concentration of hydrogen ion: $[H^+]$ $[H^+] = 10^{-14}$ moles/li

Maximum concentration: 1 mole/li

1 is 100 trillion times as large as 10^{-14}

In chemistry, the <u>acidity of a water-based solution</u> is measured by the <u>concentration of hydrogen ions</u> in the solution (in moles per liter). The hydrogen-ion concentration is written [H⁺].

Upset stomach acid	1 mole/li	1.0
Normal stomach acid		
rain	10 ⁻⁵ mole/li	0.00001
Sea water	10 ⁻⁸ mole/li	0.0000001
bleach	10 ⁻¹² mole/li	0.00000000001
Sodium Hydroxide	10 ⁻¹⁴ mole/li	0.0000000000001

These numbers <u>don't give us a good "feel</u>" for acidity.

So we use something more useful: "pH".

<u>Acidity</u> $pH = - \log [H^+]$

Don't freak out! This is just a <u>simple log equation</u>.

Upset stomach acid	1 mole/li	1
Normal stomach acid	10 ⁻² mole/li	2
rain	10 ⁻⁵ mole/li	5
Sea water	10 ⁻⁸ mole/li	8
bleach	10 ⁻¹² mole/li	12
Sodium Hydroxide	10 ⁻¹⁴ mole/li	14

pH is a much more useful way of measuring acidity that the concentration of the hydronium ion.

Acidity
$$pH = - \log [H^+]$$

The "hydronium ion concentration of a solution is $[H^+] = 5.7 \times 10^{-11} \text{ mole/li}$ What is the pH of the solution? pH = - log [5.7×10^{-11}]

pH = 10.3

The pH of baking soda is 8.6.

What is the hydrogen ion concentration?

8.6 = $-\log [x]$ $x = 10^{-8.6}$ mole/li

 $x = 2.5 \times 10^{-9}$ mole/li

Acidity

 $pH = -\log [H^+]$

The pH of baking soda is 8.6.

What is the hydrogen ion concentration?

8.6 = $-\log [x]$ $x = 10^{-8.6}$ mole/li $x = 2.5 \times 10^{-9}$ mole/li You deposit \$100 money into an account that pays 3.5% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$A(t) = A_0 (1 + \frac{r}{k})^{kt} \qquad A(5) = 100(1 + \frac{0.035}{12})^{12(5)}$$
$$A(5) = \$119.09$$

What is the doubling time for this account?

$$200 = 100(1 + \frac{0.035}{12})^{12t}$$

$$2 = (1.0029)^{12t}$$

$$\log_{1.0029}(2) = 12t$$

$$239.4 = 12t$$

$$t = 19.9 \text{ yrs}$$

A bank compounds interest continuously. The annual interest rate is 5.5%. How long would it take for the money in the account to triple?

$$A(t) = A_0 e^{rt}$$

$$3A_0 = A_0 e^{0.055t}$$

$$3 = e^{0.055t}$$

 $\ln 3 = 0.055t$

t = 19.97 yrs

The "half life" of Carbon-14 (a radioactive isotope of carbon), is 5730 years. Calculate the <u>decay rate</u> for carbon-14. The decay rate is the "k" of the exponent of 'e'.

$$A(t) = A_0 e^{kt}$$

$$0.5A_0 = A_0 e^{k(5730)}$$

$$0.5 = e^{5730(k)}$$

$$\ln 0.5 = 5730k$$

$$k = -0.00012/yr$$