Math-3A

Lesson 8-5

Logarithmic and Exponential Modeling

Rewrite the following numbers as a power of "e"

$$
\begin{aligned}
& 2 \quad e^{x}=2 \quad x=\ln 2 \quad e^{0.693} \approx 2 \\
& 1.05 \quad \approx e^{0.049} \\
& 0.98 \quad \approx e^{-0.020} \\
& 0.5 \approx e^{-0.693} \\
& -3 \text { Not possible: Why? } \\
& \ln (-3) \text { doesn't exist }
\end{aligned}
$$

We can rewrite the base of any exponential as a power of 'e'.

$$
\begin{array}{ll}
y=2^{x} & y=e^{k x} \\
y=\left(e^{k}\right)^{x} & e^{0.693} \approx 2 \\
e^{k}=2 & y=e^{0.693 x} \\
k=\ln 2 & \\
k \approx 0.693 &
\end{array}
$$

Rewrite the following as base 'e' exponential equations.

$$
\begin{aligned}
& y=4^{x}=e^{1.386 x} \quad \text { How can you distinguish } \\
& \text { between growth and decay for... } \\
& \text { A base "b" exponential? } \\
& y=b^{x} \\
& \begin{array}{|c|}
\hline 0<b<1 \text { decay } \\
b>1 \text { growth } \\
\hline
\end{array} \\
& \text { A base "e" exponential? } \\
& y=e^{k x} \\
&
\end{aligned}
$$

Temp $(0,100)$

Time (min.)

$$
T(t)=a(b)^{t}+k
$$

1) Horizontal Asymptote

$$
T(t)=a(b)^{t}+15
$$

2) y-intercept

$$
\begin{aligned}
& 100=a(b)^{0}+15 \\
& a=85
\end{aligned}
$$

3) "nice point"
$50=85(b)^{9}+15$

Boiling water $\left(100^{\circ} \mathrm{C}\right)$ is taken off the stove to cool in a room at $15^{\circ} \mathrm{C}$. After 9 minutes, the water's temperature is 50 C .
Write the modeling equation as a base 'b' exponential.

$$
\begin{aligned}
& \left(\frac{50-15}{85}\right)=(b)^{9} \\
& \left(\frac{50-15}{85}\right)^{1 / 9}=b \\
& b=0.906 \\
& \text { 4) Final equation }
\end{aligned}
$$

$$
T(t)=85(0.906)^{t}+15
$$

Temp $(0,100)$

$T(t)=85(0.906)^{t}+15$ $e^{k}=0.906$
$\ln 0.906=k$
$k=-0.0987$
$T(t)=85 e^{-0.0987 t}+15$

Boiling water $\left(100^{\circ} \mathrm{C}\right)$ is taken off the stove to cool in a room at $15^{\circ} \mathrm{C}$. After 9 minutes, the water's temperature is 50 C .

Write the modeling equation as a base 'e' exponential.

A hard-boiled egg at temperature $212^{\circ} \mathrm{F}$ is placed in $60^{\circ} \mathrm{F}$ water to cool. 5 minutes later the temperature of the egg is $95^{\circ} \mathrm{F}$. When will the egg be $75^{\circ} \mathrm{C}$?

A cake taken out of the oven at temperature of $350^{\circ} \mathrm{F}$. It is placed on in a room with an ambient temperature of $70^{\circ} \mathrm{F}$ to cool. Ten minutes later the temperature of the cake is $150^{\circ} \mathrm{F}$. When will the cake be cool enough to put the frosting on ($90^{\circ} \mathrm{F}$) ?

Sound Intensity: the rate that energy is deposited on a surface by sound. Energy

Lowest measureable sound intensity: $10^{-12} \mathrm{w} / \mathrm{m}^{2}$
Sound intensity that causes pain: $10 \mathrm{w} / \mathrm{m}^{2}$
10 is 1 trillion times larger than 10^{-12}

What is the sound intensity of?

Threshold of hearing	$10^{-12} \mathrm{w} / \mathrm{m}^{2}$	0.000000000001
breathing	$10^{-9.5} \mathrm{w} / \mathrm{m}^{2}$	0.0000000003
Threshold of pain	$10^{0} \mathrm{w} / \mathrm{m}^{2}$	1.0
Firecracker by ear	$10^{5} \mathrm{w} / \mathrm{m}^{2}$	$100,000$.
Pistol by ear	$10^{6} \mathrm{w} / \mathrm{m}^{2}$	$1,000,000$.

These numbers don't give us a good "feel" for loudness.
So we use something more useful: "Loudness". Have you heard of "dB" (decibels)?

Loudness

Loudness of the sound (in decibels) as a function of the sound intensity
10^{-12}
Intensity of sound at the threshold of hearing

The logarand is the ratio of the actual sound intensity compared to the minimum detectable sound intensity

Don't freak out! This is just a simple log equation. But you must be able to handle properties of exponents!

What is the sound intensity of?

Threshold of hearing	$10^{-12} \mathrm{w} / \mathrm{m}^{2}$	0 dB
breathing	$10^{-9.5} \mathrm{w} / \mathrm{m}^{2}$	25 dB
Threshold of pain	$10^{0} \mathrm{w} / \mathrm{m}^{2}$	120 dB
Firecracker by ear	$10^{5} \mathrm{w} / \mathrm{m}^{2}$	170 dB
Pistol by ear	$10^{6} \mathrm{w} / \mathrm{m}^{2}$	180 dB

Which units are easier?
The sound intensity values aren't nearly as useful as the decibel values.

$$
L(I)=10 \log \frac{I}{10^{-12}}
$$

An ambulance has a sound intensity of 10^{0} watts/sq meter

How Loud is the ambulance? (in decibels)
$L(I)=10 \log \frac{10^{0}}{10^{-12}}$ Properties of exponents!!!
$=10 \log 10^{0-(-12)}$
$=10 \log 10^{12}=10^{*} 12=120 \mathrm{db}$

$$
L(I)=10 \log \frac{I}{10^{-12}}
$$

The front row of a rock concert has a sound intensity of

$$
I=10^{-1} \text { watts } / \text { meter }^{2}
$$

What is the sound level in decibels on the front row of the rock concert?

$$
\begin{aligned}
L=10 \log \frac{10^{-1}}{10^{-12}} & =10 \log 10^{11} \\
& =110 \log 10 \\
& =110 \mathrm{~dB}
\end{aligned}
$$

Rate: ratio of quantities

concentration: amount of a specific
material compared to the total volume. $\quad \frac{\text { amount }}{\text { volume }}$

Unit of measure: $\frac{\text { moles }}{\text { liter }}$
Lowest measurable concentration of hydrogen ion: $\left[\mathrm{H}^{+}\right]$

$$
\left[H^{+}\right]=10^{-14} \text { moles } / \mathrm{li}
$$

Maximum concentration: 1 mole/li
1 is 100 trillion times as large as 10^{-14}

In chemistry, the acidity of a water-based solution is measured by the concentration of hydrogen ions in the solution (in moles per liter). The hydrogen-ion concentration is written $\left[\mathrm{H}^{+}\right]$.

Upset stomach acid	$1 \mathrm{~mole} / \mathrm{li}$	1.0
Normal stomach acid	$10^{-2} \mathrm{~mole} / \mathrm{li}$	0.01
rain	$10^{-5} \mathrm{~mole} / \mathrm{li}$	0.00001
Sea water	$10^{-8} \mathrm{~mole} / \mathrm{l}$	0.00000001
bleach	$10^{-12} \mathrm{~mole} / \mathrm{li}$	0.000000000001
Sodium Hydroxide	$10^{-14} \mathrm{~mole} / \mathrm{li}$	0.00000000000001

These numbers don't give us a good "feel" for acidity.
So we use something more useful: "pH".

Acidity $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
Don't freak out! This is just a simple log equation.

Upset stomach acid	$1 \mathrm{~mole} / \mathrm{li}$	1
Normal stomach acid	$10^{-2} \mathrm{~mole} / \mathrm{li}$	2
rain	$10^{-5} \mathrm{~mole} / \mathrm{li}$	5
Sea water	$10^{-8} \mathrm{~mole} / \mathrm{li}$	8
bleach	$10^{-12} \mathrm{~mole} / \mathrm{li}$	12
Sodium Hydroxide	$10^{-14} \mathrm{~mole} / \mathrm{li}$	14

pH is a much more useful way of measuring acidity that the concentration of the hydronium ion.

Acidity
 $$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

The "hydronium ion concentration of a solution is

$$
\left[\mathrm{H}^{+}\right]=5.7 \times 10^{-11} \mathrm{~mole} / \mathrm{li}
$$

What is the pH of the solution? $\mathrm{pH}=-\log \left[5.7 \times 10^{-11}\right]$

$$
\mathrm{pH}=10.3
$$

The pH of baking soda is 8.6.
What is the hydrogen ion concentration?

$$
8.6=-\log [\mathrm{x}] \quad x=10^{-8.6} \mathrm{~mole} / \mathrm{li}
$$

$$
x=2.5 \times 10^{-9} \mathrm{~mole} / \mathrm{li}
$$

Acidity

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

The pH of baking soda is 8.6.
What is the hydrogen ion concentration?

$$
\begin{aligned}
& 8.6=-\log [\mathrm{x}] \\
& x=10^{-8.6} \mathrm{~mole} / \mathrm{li} \\
& x=2.5 \times 10^{-9} \text { mole/li }
\end{aligned}
$$

You deposit \$100 money into an account that pays 3.5\% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$
\begin{gathered}
A(t)=A_{0}(1+r / k)^{k t} \quad A(5)=100\left(1+0.035 / 12^{12(5)}\right. \\
A(5)=\$ 119.09
\end{gathered}
$$

What is the doubling time for this account?

$$
\begin{aligned}
& 200=100(1+0.035 / 12)^{12 t} \\
& 2=(1.0029)^{12 t} \\
& \log _{1.0029}(2)=12 t \quad 239.4=12 t \quad t=19.9 \mathrm{yrs}
\end{aligned}
$$

A bank compounds interest continuously. The annual interest rate is 5.5%. How long would it take for the money in the account to triple?

$$
\begin{aligned}
& A(t)=A_{0} e^{r t} \\
& 3 A_{0}=A_{0} e^{0.055 t} \\
& 3=e^{0.055 t}
\end{aligned}
$$

$$
\ln 3=0.055 t
$$

$$
t=19.97 \mathrm{yrs}
$$

The "half life" of Carbon-14 (a radioactive isotope of carbon), is 5730 years. Calculate the decay rate for carbon-14. The decay rate is the " k " of the exponent of ' e '.

$$
\begin{aligned}
& A(t)=A_{0} e^{k t} \\
& 0.5 A_{0}=A_{0} e^{k(5730)} \\
& 0.5=e^{5730(k)} \\
& \ln 0.5=5730 k \\
& k=-0.00012 / y r
\end{aligned}
$$

