SM3-A

Lesson 9-2

Co-terminal Angles, Radian Measure, 45-45-90 Triangles, 30-60-90 Triangles

Angles are classified based upon their degree measure.
Acute angle: $0^{\circ}<m \Varangle<90^{\circ}$
Right angle: $m \Varangle=90^{\circ}$
Obtuse angle: $90^{\circ}<m \measuredangle<180^{\circ}$
Straight angle: $m \Varangle=180^{\circ}$
Adjacent angles share a common endpoint and one side.
Complimentary angles: two angles whose sum is 90 degrees. They need not be adjacent.

Angle: two rays with a common end point
Initial side of the angle: Angles graphed on the $x-y$ plane, have their vertex at the origin. The initial side always points in the positive ' x ' direction.

Terminal side of the angle: points in any direction from the origin.

We think of these angles as "opening" as the terminal side moves around the circle.

Positive Angles: The terminal side opened in the counter-clockwise direction from the initial side of the angle.

Angle measure: is put at the end of the terminal side rather than inside the angle.

Negative Angles: The terminal side opened in the clockwise direction from the initial side of the angle.

Co-terminal Angles: may have different measures but they share both the initial and terminal sides.

In general: co-terminal angles have measures defined by:

$$
m \angle \theta=m \angle \beta \pm 360 n
$$

where ' n ' is the number of revolutions beyond the $1^{\text {st }}$ one.

Determining If angles are co-terminal:. $\quad m \angle \theta=m \angle \beta \pm 360 n$

$$
\begin{aligned}
& m \angle \theta=1550 \\
& m \angle \beta=1550-360=1190 \\
& m \angle \beta=1550-2(360)=830 \\
& m \angle \beta=1550-3(360)=470 \\
& m \angle \beta=1550-4(360)=100 \\
& m \angle \beta=1550-5(360)=-250
\end{aligned}
$$

A typical co-terminal angle problem: will give the measure of an angle then ask for a different positive and negative co-terminal angle.

Pi: an irrational number that is the ratio of the distance around the circle to the distance across the circle.

$$
\pi=\frac{C}{D}
$$

$$
\pi=\frac{C}{2 r}
$$

$$
C=2 \pi r
$$

radian measure $($ of a circle $)=$ circumference
radian measure (of a circle) $=\frac{2 \pi f}{r}=2 \pi$

Units of radians = inches/inches

Radian measure has no units! (nice)

What is the radian measure of an angle that is $1 / 2$ of the circle?

$$
\text { whole circle }=2 \pi \text { radians }
$$

Radians vs. Degrees
$360^{\circ}=2 \pi$ (radians)
half circle $=\pi$ radians
Radians vs. Degrees
$180^{\circ}=\pi$ (radians)

Convert between radians and degrees using a "proportion".

$$
\frac{\text { angle }_{\text {degrees }}}{360}=\frac{\text { angle }_{\text {radians }}}{2 \pi}
$$

$$
\begin{aligned}
\frac{7}{8} \pi \quad \frac{\text { angle }_{\text {degrees }}}{360} & =\frac{7 / 8^{\pi}}{2 \pi} \\
360 * \frac{\text { angle }_{\text {degrees }}}{360} & =0.4375 * 360 \\
\text { angle }_{\text {degrees }} & =157.5^{\circ}
\end{aligned}
$$

$$
180^{\circ}=\pi \text { radians }
$$

Divide both sides by 180

$$
\frac{180^{\circ}}{180^{\circ}}=\frac{\pi}{180^{\circ}}
$$

$$
1=\frac{\pi}{180^{\circ}}
$$

$$
\left(\frac{\pi}{180^{\circ}}\right) \quad \begin{gathered}
\text { These are } \\
\text { "unit conversion factors" }
\end{gathered}
$$

Divide both sides by π

$$
\frac{180^{\circ}}{\pi}=\frac{\pi}{\pi}
$$

$$
1=\frac{180^{\circ}}{\pi}
$$

$$
\left(\frac{180^{\circ}}{\pi}\right)
$$

Unit Conversion factor: a ratio of equal measurements in different units that allow conversion of a one type of unit to another (feet \rightarrow inches, degrees \rightarrow radians, radians \rightarrow degrees etc.)

When you multiply a number by one of these factors, (you are multiplying by " 1 ") but the units are converted.

Converting from Degrees to Radian Measure

$$
140^{\varnothing}\left(\frac{\pi}{180^{\prime}}\right)=\frac{140}{180} \pi=\frac{14}{18} \pi=\frac{7}{9} \pi
$$

Converting from Radian Measure to Degrees

$$
\frac{x^{t}}{2}\left(\frac{180^{\circ}}{\not x}\right)=90^{\circ}
$$

$$
\frac{11}{3} \pi=? \quad 270^{\circ}=?
$$

Determining If angles are co-terminal:. $\quad m \angle \theta=m \angle \beta \pm 2 \pi * n$
$m \angle \theta=\frac{\pi}{4} \quad m \angle \beta=\frac{\pi}{4}-2 \pi=\frac{\pi}{4}-\frac{8 \pi}{4}=\frac{-7 \pi}{4}$

$$
\begin{aligned}
& m \angle \beta=\frac{\pi}{4}-2(2 \pi)=\frac{\pi}{4}-\frac{16 \pi}{4}=\frac{-15 \pi}{4} \\
& m \angle \beta=\frac{\pi}{4}+2 \pi=\frac{\pi}{4}+\frac{8 \pi}{4}=\frac{9 \pi}{4} \\
& m \angle \beta=\frac{\pi}{4}+2(2 \pi)=\frac{\pi}{4}+\frac{16 \pi}{4}=\frac{17 \pi}{4}
\end{aligned}
$$

A typical co-terminal angle problem: will give the measure of an angle then ask for a different positive and negative co-terminal angle.

Isosceles Right Triangle: a right triangle with two sides that are congruent.

1) Find the measures of the base angles.

$$
\begin{gathered}
y^{\circ}+y^{\circ}+90=180 \\
2 y^{\circ}=90 \quad y=45^{\circ}
\end{gathered}
$$

h

2) " X " can be any number. To make it really easy, lets just make $x=1$.
3) Solve for ' h '. $a^{2}+b^{2}=c^{2}$

h

$$
1^{2}+1^{2}=c^{2}
$$

$$
2=c^{2}
$$

$$
c=\sqrt{2}
$$

We start with an Equilateral Triangle (all 3 sides and all 3 angles are congruent) We construct an angle bisector.
Are the two triangles congruent?

> Yes: by ASA

CPCTC (all remaining corresponding pairs of angles and sides are congruent).

$$
\text { Length }=1 \text { and length = } 1
$$

Bottom legs (of the right triangles) are congruent so each is $1 / 2$ the total of the original triangle's bottom length).

We now have a 30-60-90 triangle.

$$
\begin{aligned}
& \quad \text { Solve for 'x'. } \\
& a^{2}+b^{2}=c^{2} \\
& x^{2}+1^{2}=2^{2} \\
& x^{2}=4-1 \\
& x^{2}=3 \\
& x=\sqrt{3}
\end{aligned}
$$

Remember that having right triangles with a hypotenuse $=1$ is "nice".
Find the lengths of a similar triangle (for each) that has a hypotenuse $=1$.

