Math-3A Lesson 9-1

Trigonometric Ratios for Right Triangles

Do it right now!

1. Obtain a the following:
a) Paper triangle from Mr. Long.
b) Protractor
c) Ruler
d) Instruction sheet

Triangle Similarity: Same shape (not same size)
Shape results from three pairs of congruent angles.

What did we learn from our activity?

? Each angle measure has its own unique ratio.
The size of the triangle does not matter.
A
The numerical value of this ratio is a property of the measure of the angle
"Ratios" are decimal form (not in fraction form).
These "Ratios" are unique numbers for each angle; they are Properties of the angle.

Angle	$\frac{o p p}{h y p}$	Radian	Degree	Sine	Cosine	$\frac{\text { Tan }}{0.0}$
		0.000	0	0.000	1.000	
		0.017	1	0.017	1.000	0.
10°	0.1736	0.035	2	0.035	0.999	0.
		0.052	3	0.052	0.999	0.
20°	0.3420	0.070	4	0.070	0.998	0.
30°	0.5	0.087	5	0.087	0.996	0.
30		0.105	6	0.105	0.995	0
43.9°	0.6934	0.122	7	0.122	0.993	0
60°	0.8660	0.157	9	0.156	0.988	0
60	0.8660	0.175	10	0.174	0.985	0
		0.192	11	0.191	0.982	0
		0.209	12	0.208	0.978	0.

$\operatorname{sine} \mathrm{A}=\frac{o p p}{h y p} \quad \sin 10^{\circ}=0.174$

$$
B \quad \sin 10^{\circ}=\frac{0.174}{1}
$$

$$
\begin{aligned}
& 1000 \sin 10^{\circ}=\frac{x}{1000} \\
& x=174
\end{aligned}
$$

What are the "code words" for the ratios? SOH-CAH-TOA

$\sin \theta=\frac{\text { opposite (length) }}{\text { hypotenuse (length) }}$
$\cos \theta=\frac{\text { adjacent (length) }}{\text { hypotenuse (length) }}$
$\tan \theta=\frac{\text { opposite (length) }}{\text { adjacent (length) }}$

Key point: sine of an angle (measured in degrees or radians)

$$
\sin 30^{\circ}=\frac{\text { opposite (length) }}{\text { hypotenuse (length) }}
$$

The ratio is a property of the angle. We must know the angle measure to find the correct ratio.

These only work for right triangles!!!

Trigonometric Functions

Shot your cow:
 "Sha - Cho - Cao"

Notice that these ratios are reciprocals of the sine, cosine, and tangent ratios.
$\sin \theta \rightarrow \csc \theta$

$$
\sec A=\frac{h}{a} \quad \frac{\text { hypotenuse }}{\text { adjacent }}
$$

$\cos \theta \rightarrow \sec \theta$

$$
\csc A=\frac{h}{o} \quad \frac{\text { hypotenuse }}{\text { opposite }}
$$

$$
\cot A=\frac{a}{o} \quad \frac{\text { adjacent }}{\text { opposite }}
$$

The sine ratio is the reciprocal of the cosecant ratio.

Trig Ratios
$\cos A=?$
$\sec A=$?
$\sec A=\frac{5}{4}$
$\sin B=$?
$\csc B=$?
$\sin B=\frac{4}{5}$
$\csc B=\frac{5}{4}$
$\tan B=$?
$\tan B=\frac{4}{3}$
$\cot A=?$
$\cot A=\frac{4}{3}$

$\tan A=$?
$\tan A=\frac{3}{4}$

What patterns can you see?

$\tan B=$?
$\tan B=\frac{4}{3}$
$\cot A=?$
$\cot A=\frac{4}{3}$

Cosine A and Secant A are reciprocals.

$\tan A=?$
$\tan A=\frac{3}{4}$

What patterns can you see?

$$
\cos A=? \quad \sec A=?
$$

$\cos A=\frac{4}{5}$
$\sec A=\frac{5}{4}$
$\sin B=$?
$\csc B=$?
$\csc B=\frac{5}{4}$

Sine B and Cosecant B are reciprocals.
$\tan B=$?
$\cot A=?$
$\tan A=?$
$\tan B=\frac{4}{3}$
$\cot A=\frac{4}{3}$
$\tan A=\frac{3}{4}$

What patterns can you see?

$\csc B=$?
$\csc B=\frac{5}{4}$
$\operatorname{Cos} A=\operatorname{Sin} B$
$\operatorname{Cos} 20=\operatorname{Sin} 70$
$\tan A=$?
$\tan A=\frac{3}{4}$

What patterns can you see?
$\begin{array}{ll}\cos A=? & \sec A=? \\ \cos A=\frac{4}{5} & \sec A=\frac{5}{4}\end{array}$
$\sin B=$?
$\sin B=\frac{4}{5}$
$\csc B=$?
$\csc B=\frac{5}{4}$
$\tan B=$?
$\cot A=?$
$\tan B=\frac{4}{3}$
$\operatorname{Tan} \mathrm{A}=\operatorname{Cot} \mathrm{B}$
Tan $30=\operatorname{Cot} 60$

$\tan A=$?
$\tan A=\frac{3}{4}$

What patterns can you see?

$\sin B=$?
$\sin B=\frac{4}{5}$
$\csc B=$?
$\csc B=\frac{5}{4}$

$$
\tan B=\text { ? }
$$

$\tan B=\frac{4}{3}$

$\cot A=?$

$\cot A=\frac{4}{3}$

Tan A and Tan B are reciprocals.

$\tan A=?$

hypotenuse = 1

Why is it "nice" to have a hypotenuse whose length is ' 1 '?
$\operatorname{Sin} \theta=$ opposite side
$\operatorname{Cos} \theta=\underline{\text { adjacent side }}$

$\operatorname{Tan} \Theta=$ opp/adj

The length of the hypotenuse is no longer in the ratio!

Trig Ratios of Acute Angles

What shape is used to define trig ratios?
right triangle.

Using these definitions we can't have angles > 90!!!

Trig ratios for obtuse angles: we need acute angles!!
$\operatorname{Sin} \Theta=$ opposite side
$\operatorname{Cos} \theta=$ adjacent side

Tan $\Theta=\underline{o p p / a d j}$

Trig ratios only work for right triangles! If angle is greater than 90

1. Build a standard position angle on the $x-y$ plane, with vertex at $(0,0)$
2. Initial side of the angle: always points along the positive x-axis.
3. Terminal side of the angle: points outward from $(0,0)$.
4. We build a right triangle, hypotenuse is the terminal side.
5. We use the reference angle for our trig ratios.

Reference angle: the acute angle between the terminal side of a standard position angle and the x-axis.

With a right triangle with a hypotenuse $=1$ on the $x-y$ plane, by using the reference angle for our trig ratios, the $x-y$ pair at the end of the hypotenuse gives us adjacent side length and opposite side length of the right triangle.

For Quadrant I $\quad \theta_{\text {ref }}=\theta_{\text {std }}$
$\operatorname{Sin} \Theta=y$-value of the point
$\operatorname{Cos} \Theta=x$-value of the point
$($ adj, opp $)=(x, y)$
$\operatorname{Tan} \Theta=y / x$
Trig ratios will be positive \#'s

For Quadrant II $\quad \theta_{\text {ref }}=180-\theta_{\text {std }}$
Sine ratio is a positive number
Cosine ratio is a negative number
Tangent ratio is a negative number
(adj, opp) $=(\mathrm{x}, \mathrm{y})$

For Quadrant III $\quad \theta_{\text {ref }}=\theta_{\text {std }}-180$
Sine ratio is a negative number
Cosine ratio is a negative number
Tangent ratio is a positive number

For Quadrant III $\quad \theta_{\text {ref }}=360-\theta_{\text {std }}$
Sine ratio is a negative number
Cosine ratio is a positive number
Tangent ratio is a negative number

