## Math-3A Lesson 9-1

**Trigonometric Ratios for Right Triangles** 

# Do it right now!

- 1. Obtain a the following:
  - a) Paper triangle from Mr. Long.
  - b) Protractor
  - c) Ruler
  - d) Instruction sheet

<u>Triangle Similarity</u>: Same <u>shape</u> (not same size)

Shape results from three pairs of congruent angles.

 $\angle A \cong \angle G$ 

 $\angle B \cong \angle E$ 

Similarity results in the ratios of corresponding sides always equaling the <u>same number.</u>



$$\frac{AB}{GE} = \frac{BC}{EF} = \frac{AC}{GF} = \frac{15}{10} = \frac{3}{2}$$

We call this number the <u>"scale factor"</u>



#### "Ratios" are decimal form (not in fraction form).

#### These "<u>Ratios</u>" are unique numbers for each angle; they are **Properties of the angle.**

|              | onn                  | Radian | Degree | Sine  | Cosine | Tan |
|--------------|----------------------|--------|--------|-------|--------|-----|
| Angle        | $\frac{\circ PP}{1}$ | 0.000  | 0      | 0.000 | 1.000  | 0.0 |
|              | hyp                  | 0.017  | 1      | 0.017 | 1.000  | 0.0 |
| $10^{\circ}$ | 0.1736               | 0.035  | 2      | 0.035 | 0.999  | 0.0 |
|              |                      | 0.052  | 3      | 0.052 | 0.999  | 0.0 |
| $20^{\circ}$ | 0.3420               | 0.070  | 4      | 0.070 | 0.998  | 0.0 |
| 20           |                      | 0.087  | 5      | 0.087 | 0.996  | 0.0 |
| $30^{\circ}$ | 0.5                  | 0.105  | 6      | 0.105 | 0.995  | 0.1 |
| 12 0°        | 0.6934               | 0.122  | 7      | 0.122 | 0.993  | 0.1 |
| 43.9         |                      | 0.140  | 8      | 0.139 | 0.990  | 0.1 |
| $60^{\circ}$ | 0.8660               | 0.157  | 9      | 0.156 | 0.988  | 0.1 |
|              |                      | 0.175  | 10     | 0.174 | 0.985  | 0.1 |
|              |                      | 0.192  | 11     | 0.191 | 0.982  | 0.1 |
|              |                      | 0.209  | 12     | 0.208 | 0.978  | 0.2 |



### What are the "code words" for the ratios? SOH-CAH-TOA





The sine ratio is the reciprocal of the cosecant ratio.

**Trig Ratios** 

$$\cos A = ?$$
  

$$\sec A = ?$$
  

$$\sec A = \frac{5}{4}$$
  

$$\sec A = \frac{5}{4}$$
  

$$\sin B = ?$$
  

$$\csc B = ?$$
  

$$\csc B = \frac{5}{4}$$

$$\tan B = ? \qquad \cot A = ? \qquad \tan A = ?$$
$$\tan B = \frac{4}{3} \qquad \cot A = \frac{4}{3} \qquad \tan A = \frac{3}{4}$$





 $\tan B = ? \qquad \cot A = ?$  $\tan B = \frac{4}{3} \qquad \cot A = \frac{4}{3}$ 



Cosine A and Secant A are <u>reciprocals</u>.

$$\tan A = ?$$
$$\tan A = \frac{3}{4}$$







| $\cos A = ?$ $\cos A = \frac{4}{5}$ | $\sec A = ?$ $\sec A = \frac{5}{4}$ |
|-------------------------------------|-------------------------------------|
| $\sin B = ?$ $\sin B = \frac{4}{5}$ | $\csc B = ?$ $\csc B = \frac{5}{4}$ |

 $\tan B = ?$ 

3

 $\tan B =$ 

 $\cot A = ?$ 

 $\cot A =$ 



| $\cos A = ?$ $\cos A = \frac{4}{5}$ | $\sec A = ?$ $\sec A = \frac{5}{4}$ |
|-------------------------------------|-------------------------------------|
| $\sin B = ?$ $\sin B = \frac{4}{5}$ | $\csc B = ?$ $\csc B = \frac{5}{4}$ |



Tan A and Tan B are reciprocals.

 $\tan A = ?$ 

 $\tan A =$ 



hypotenuse = 1

Why is it "nice" to have a hypotenuse whose length is '1'?



Tan ⊖= <u>opp/adj</u>

The length of the hypotenuse is no longer in the ratio!

#### Trig Ratios of Acute Angles



Using these definitions we can't have angles > 90!!!

Trig ratios for obtuse angles: we need acute angles!!



Tan ⊖= <u>opp/adj</u>

Trig ratios only work for right triangles! If angle is greater than 90...

- 1. Build a standard position angle on the x-y plane, with vertex at (0, 0)
- 2. Initial side of the angle: always points along the positive x-axis.
- 3. Terminal side of the angle: points outward from (0, 0).
- 4. We build a right triangle, hypotenuse is the terminal side.
- 5. We use the reference angle for our trig ratios.



<u>Reference angle</u>: the acute angle between the terminal side of a standard position angle and the x-axis.

With a <u>right triangle</u> with a hypotenuse =1 on the x-y plane, by using the <u>reference angle</u> for our trig ratios, the x-y pair at the end of the hypotenuse gives us <u>adjacent side length</u> and <u>opposite side length</u> of the right triangle.













