Math-3A Lesson 8-1

Properties of Logarithmic Functions
(Product of Logs
Log of a Power)

Exponential Function

Inverse
Functions
Logarithm
Function

$f(x)=10^{x}$
Domain $=$? $\quad(-\infty, \infty)$
Range $=? \quad(0, \infty)$
Horizontal asymptote $=$?

$$
y=0
$$

$$
f^{-1}(x)=\log _{10}(x)
$$

Domain $=$?
$(0, \infty)$
Range $=$? $\quad(-\infty, \infty)$
Vertical asymptote $=$?

$$
x=0
$$

Transformations of the Log Function

$$
f(x)=\log x
$$

Domain =? ($0, \infty$)
Range $=$? $\quad(-\infty, \infty)$
vertical asymptote = ?

$$
x=0
$$

X-intercept $=$?

$$
x=1
$$

Where increasing = ?

$$
(0, \infty)
$$

Logarand

$$
g(x)=3 \log (\underbrace{2 x-1})+5
$$
 Logarand

Vertical Asymptote: The value of ' x ' that makes the logarand equal to zero.

Vertical asymptote $=$?

$$
\begin{gathered}
2 x-1=0 \\
x=1 / 2
\end{gathered}
$$

Convert to logarithm form
What is the solution?

$$
\begin{array}{lll}
\mathrm{x}=2 & 5^{x}=25 & \log _{5} 25=x \\
\mathrm{x}=3 & 4^{x}=64 & \log _{4} 64=x \\
\mathrm{x}=? ? ? & b^{x}=y & \log _{b} y=x \\
\mathrm{x}=2 & 9^{x}=81 & \log _{9} 81=x \\
\mathrm{x}=3 & 10^{x}=1000 & \log _{10} 1000=x
\end{array}
$$

Convert to exponential form

What is the solution?

$$
\begin{array}{lll}
\mathrm{x}=2 & \log _{10} 100=x & 10^{x}=100 \\
\mathrm{x}=3 & \log _{3} 27=x & 3^{x}=27 \\
\mathrm{x}=0 & \log _{9} 1=x & 9^{x}=1 \\
\mathrm{x}=16 & \log _{4} x=2 & 4^{2}=x \\
\mathrm{x}=32 & \log _{2} x=5 & 2^{5}=x
\end{array}
$$

$f(x)=5^{2 x+4} \quad$ Find $\quad f^{-1}(x)$

$$
\begin{array}{ll}
y=5^{2 x+4} & \text { Replace } f(x) \text { with ' } y ' \\
x=5^{2 y+4} & \text { exchange ' } x \text { ' and ' } y \text { ' }
\end{array}
$$

$\log _{5} x=2 y+4$
Log is the exponent (remember how to convert between the two?)
$-4+\log _{5} x=2 y \quad$ Solve for ' y '
$\frac{-4+\log _{5} x}{2}=y$

$$
y=-2+1 / 2 \log _{5} x
$$

$$
\begin{aligned}
& y=\left(1+\frac{1}{x}\right)^{x} \\
& \\
& A(t)=(1+r / k)^{k t} \sim \text { 2.718... } \\
& A(t)=e^{r t}
\end{aligned}
$$

$$
2^{3} * 2^{2}=2^{5}
$$

The product of powers \rightarrow add the exponents

$$
2^{3} * 2^{2}=2^{5}
$$

Logarithm: another way of writing the exponent
Convert each exponent above into a log:

$$
\begin{gathered}
\log _{2} 8+\log _{2} 4=\log _{2} 32 \\
3+2=5
\end{gathered}
$$

This is the logarithm equivalent of the multiply powers property of exponents.

Log of a Product Property

$$
\begin{gathered}
\log _{2} 15=\log _{2}(3 * 5) \\
\log _{2} 15=\log _{2} 3+\log _{2} 5 \\
\log _{b}(R S)=\log _{b} R+\log _{b} S
\end{gathered}
$$

$\underline{\log \text { of a product }}=\underline{\text { sum }}$ of the logs of the factors.

Expand the Logarithm: use properties of logs to rewrite a single log as an expression of separate logs.

$$
\begin{aligned}
& \log _{3} x y \quad \log _{3} x+\log _{3} y \\
& \log _{3} 45 \quad \log _{3} 3+\log _{3} 3+\log _{3} 5 \\
& 45=3 * 3 * 5
\end{aligned} \quad 2 \log _{3} 3+\log _{3} 5 \quad l
$$

Expand the Logarithm: use properties of logs to rewrite a single log as an expression of separate logs.

$$
\begin{gathered}
\log \left(3 x y^{2}\right)=\log 3+\log x+\log y^{2} \\
=\log 3+\log x+\log y+\log y \\
=\log 3+\log x+2 \log y \\
\log _{4} 6=\log _{4} 3+\log _{4} 2
\end{gathered}
$$

$$
\ln 2 x y w=\ln 2+\ln x+\ln y+\ln w
$$

Condense the Logarithm: apply properties of logarithms to rewrite the log expression as a single log.
$\log _{2} 7+\log _{2} 5=\log _{2}(7 * 5) \quad=\log _{2} 35$
$\log 5+\log x=\log 5 x$
$\log _{7} 5+\log _{5} 7 \quad$ "unlike logs" \rightarrow can't condense

"Condense the Log"

$$
\begin{aligned}
\log _{5} 2+\log _{5} 7 & =\log _{5} 14 \\
\log 9+\log 4 & =\log 36
\end{aligned}
$$

$\log _{5} 6+\log _{8} 4$
"unlike logs" \rightarrow can't condense
"Expand the Log"

$$
\begin{aligned}
\log _{2} 9 & =\log _{2}(3 * 3) \\
& =\log _{2} 3+\log _{2} 3 \\
& =2 \log _{2} 3
\end{aligned}
$$

Notice something interesting

$$
\log _{2} 9=\log _{2}(3)^{2}=2 \log _{2} 3
$$

"Expand the Product"

$$
\begin{aligned}
\log _{3} 16 & =\log _{3}(4 * 4) \\
& =\log _{3} 4+\log _{3} 4 \\
& =2 \log _{3} 4
\end{aligned}
$$

Notice something interesting

$$
\log _{3} 16=\log _{3}(4)^{2}=2 \log _{3} 4
$$

"Expand the Product"

$\log _{5} 10^{2} \quad$ Log of a product is the sum of the logs of the factors.

$=\log _{5} 10+\log _{5} 10 \quad$ Combine "like terms"
$=2 \log _{5} 10$
$\log _{5} 10^{2}=2 \log _{5} 10$
New property: "log of a power"

Use Log of a Power simplify

$$
\begin{aligned}
& \log x^{3}=3 \log x \\
& \ln 8=\ln 2^{3}=3 \ln 2 \\
& \log \sqrt{x}=\log x^{1 / 2}=\frac{1}{2} \log x
\end{aligned}
$$

Gotcha'

$$
\begin{aligned}
\log 3 y^{5} & =5 \log 3 y \\
= & =\log 3+\log y^{5}
\end{aligned}
$$

Which one?

$5 \log 3 y=\log (3 y)^{5}=\log 3^{5} y^{5}$

Log of a Power

$c \rightarrow \log _{b} R^{-} \rightarrow c \log _{b} R$
A potential error is this:

$$
\log _{2} 6 x^{3}=3 \log 6 x
$$

What is the error ? ' 3 ' is an exponent of the base ' x ' not ' $6 x$ '
Correct the error.

$$
\begin{aligned}
& \log _{2} 6 x^{3}=\log _{2} 6+\log _{2} x^{3} \\
& =\log _{2} 3+\log _{2} 2+3 \log _{2} x
\end{aligned}
$$

