Math-3-A

Lesson 7-7
The Logarithm Function

Finding the Inverse: exchange the locations of ' x ' and ' y ' in the equation then solve for ' y '.

$$
\begin{array}{cl}
f(x)=(x-2)^{2} & \sqrt{x}=\sqrt{(y-2)^{2}} \\
y=(x-2)^{2} & \pm \sqrt{x}=y-2 \\
x=(y-2)^{2} & \pm \sqrt{x}+2=y \\
& y=2 \pm \sqrt{x}
\end{array}
$$

Domain, Range, and Inverse Functions

Domain: The input values (that have corresponding outputs)

Range: The output values (that have corresponding inputs)

Inverse of a Function: A function resulting from an "exchange" of the inputs and outputs.
$f(x)$: Domain, Range
$f^{-1}(x)$: Domain $=$ range of $f(x)$ Range $=$ domain of $f(x)$

Exponential Function

Inverse
Functions
Logarithm
Function

$f(x)=10^{x}$
Domain $=$? $\quad(-\infty, \infty)$
Range $=? \quad(0, \infty)$
Horizontal asymptote $=$?

$$
y=0
$$

$$
f^{-1}(x)=\log _{10}(x)
$$

Domain $=$?
$(0, \infty)$
Range $=$? $\quad(-\infty, \infty)$
Vertical asymptote $=$?

$$
x=0
$$

Transformations of the Log Function

$$
f(x)=\log x
$$

Domain =? ($0, \infty$)
Range $=$? $\quad(-\infty, \infty)$
vertical asymptote = ?

$$
x=0
$$

X-intercept $=$?

$$
x=1
$$

Where increasing = ?

$$
(0, \infty)
$$

Logarand

$$
g(x)=3 \log (\underbrace{2 x-1})+5
$$
 Logarand

Vertical Asymptote: The value of ' x ' that makes the logarand equal to zero.

Vertical asymptote $=$?

$$
\begin{gathered}
2 x-1=0 \\
x=1 / 2
\end{gathered}
$$

Evaluating Logs on your calculator

$$
\log 8=?
$$

Push buttons:
log 8) $\quad 0.903089987$

$\ln 10=$?

Push buttons:

$$
\log 0=? \quad \text { error Why? }
$$

Only input values $x=(0, \infty)$ have corresponding outputs.

$$
\log (-3)=? \text { error Why? }
$$

-3 is not in the "domain" of the function.

Transformations of the Log Function

 $f(x)=\log x$$g(x)=2 \log (x+1)-3$
VSF = 2
left 1 translation
Down 3 translation
Domain $=$? $\quad X=(-1, \infty)$
Range $=? \quad(-\infty, \infty)$
Asymptote $=$? $\quad X=-1$

$$
\begin{aligned}
& f(x)=\log x \\
& g(x)=-3 \log (x-2)+1
\end{aligned}
$$

Asymptote $=? \quad X=2$
NOT exponential (has a vertical asymptote, does NOT have a horizontal asymptote.

What is a logarithm?

A logarithm is another way of writing an exponent.

$$
\begin{array}{cl}
2^{x}=8 & \log _{2} 8=x \\
\mathrm{x} \text { is the exponent } & \log =\text { exponent }
\end{array}
$$

Both of these equations are saying the same thing:
" 2 raised to what power is 8 ?"

Exponential Form

"base 2 raised to the $3^{\text {rd }}$ is 8 "

$$
3^{x}=9
$$

What exponent of 3 equals 9 ?

Logarithm Form

"log base 2 of 8 is 3 "
$\log _{3} 9=x$
What exponent of 3 equals 9 ?

$$
x=2
$$

Convert to logarithm form
What is the solution?

$$
\begin{array}{lll}
\mathrm{x}=2 & 5^{x}=25 & \log _{5} 25=x \\
\mathrm{x}=3 & 4^{x}=64 & \log _{4} 64=x \\
\mathrm{x}=? ? ? & b^{x}=y & \log _{b} y=x \\
\mathrm{x}=2 & 9^{x}=81 & \log _{9} 81=x \\
\mathrm{x}=3 & 10^{x}=1000 & \log _{10} 1000=x
\end{array}
$$

Convert to exponential form

What is the solution?

$$
\begin{array}{lll}
\mathrm{x}=2 & \log _{10} 100=x & 10^{x}=100 \\
\mathrm{x}=3 & \log _{3} 27=x & 3^{x}=27 \\
\mathrm{x}=0 & \log _{9} 1=x & 9^{x}=1 \\
\mathrm{x}=16 & \log _{4} x=2 & 4^{2}=x \\
\mathrm{x}=32 & \log _{2} x=5 & 2^{5}=x
\end{array}
$$

Common Logarithm: has a base of 10 .

$$
\log _{10} 100=x
$$

We usually write it in this form: $\quad \log 100=x$
Natural Logarithm: has a base of e .

$$
\log _{e} 2.718=1
$$

We always write it in this form: $\quad \ln 2.718=1$

What is the base?

$$
\log _{2} 8=x \quad \ln 5=x \quad \log 20=x
$$

What is the Solution?

$$
\begin{array}{ll}
\frac{1}{100}=\log _{10}(x) & x=-2 \\
x=\log _{2} \sqrt{2} & x=\frac{1}{2} \\
x=\log _{5} \frac{1}{\sqrt[3]{5}} & x=-\frac{1}{3}
\end{array}
$$

Estimate the value of the log: $\log (8)$

$$
\log 8=x \quad 10^{x}=8
$$

Find $\log 8$ on your calculator. $\quad \log 8=0.903$

Estimate the value of the log: $\log _{2} 17$

$\log _{2} 17=x \quad \rightarrow 2^{x}=17$		
2^{3}	2^{4}	2^{x}

Find $\log _{2} 17$ on your calculator. $\quad \log _{2} 17=4.09$

Estimate the value of the log (without using your calculator)

$$
\log _{3} 30 \quad \log _{5} 30 \quad \log _{6} 30
$$

Finding the Inverse $\quad f^{-1}(x)=$?

$$
f(x)=3^{x} \quad \text { Shift ' } x \text { ' and ' } y \text { ' }
$$

$x=3^{y} \quad$ "Undo the Exponential" (Convert it to a log)
"A log is an exponent"

$$
y=\log _{3} x \quad f^{-1}(x)=\log _{3} x
$$

Finding the Inverse $\quad f^{-1}(x)=?$
$f(x)=(3)^{x-1}+2 \quad$ Shift ' x ' and ' y '

$$
x=(3)^{y-1}+2 \quad \text { "isolate" the exponential" }
$$

$$
x-2=(3)^{y-1} \quad \text { "Undo the Exponential" (Convert it to a log) }
$$

"A log is an exponent"
$y-1=\log _{3}(x-2)$
$y=\log _{3}(x-2)+1$
$f^{-1}(x)=\log _{3}(x-2)+1$

Finding the Inverse $f^{-1}(x)=$?
$f(x)=\left(3^{x-1}+2 f^{-1}(x)=\log _{3}(x-2)+1\right.$
Right $1 \rightarrow$ up 2 Right $2 \rightarrow$ up 1

Finding the Inverse $f^{-1}(x)=$?
$f(x)=2 \log _{2}(x+1) \quad$ Shift ' x ' and ' y '

$$
x=2 \log _{2}(y+1) \quad \text { "Isolate the log" }
$$

$\frac{x}{2}=\log _{2}(y+1) \quad$ "Undo the $\log ^{\text {" (Convert it to an exponential) }}$ "A log is an exponent"

$$
\begin{aligned}
& y+1=2^{x / 2} \\
& y=2^{x / 2}-1 \quad f^{-1}(x)=2^{x / 2}-1
\end{aligned}
$$

