Math-3-A Lesson 7-4

Review the Exponential Function

The "Parent" Exponential Function

$$
y=b^{x} \text { exponent }
$$

$y=2^{x}$ (base 2 exponential function)
$y=3^{x}$ (base 3 exponential function)
$y=\left(\frac{1}{2}\right)^{x}$ (base $1 / 2$ exponential function)
The base MUST BE positive and CANNOT equal 1.

$$
b=(0,1) \cup(1, \infty)
$$

Fill in the output values of the table and graph the points.

$$
f(x)=2^{x}
$$

Exponential Function $f(x)=2^{x}$

Will the ' y ' value ever reach zero (on the left end of the graph)?
As the denominator gets bigger and bigger, the decimal version of the fraction gets smaller and smaller.

X	$2^{()}$	y	' y gets
-1	$2^{(-1}$	1/2	$f(-1)=$
-2	$2^{(-2)}$	1/4	f
-3	2	/ 8	$f(-3)=1 / 8$
-4	$2^{(-4)}$	1/16	$f(-4)=$
-5	$2^{(-5)}$	1/32	$f(-5)=1 / 3$

Horizontal Asymptote: a horizontal line

$$
f(x)=2^{x}
$$

the graph approaches but never reaches.

$$
y=0
$$

Domain $=$?

$$
x=(-\infty, \infty)
$$

range $=$?

$$
y=(0, \infty)
$$

y -intercept $=$?
$f(0)=y$ intercept

$$
f(0)=2^{0}=1
$$

Exponential Growth: the graph is increasing. Growth occurs when the base of the exponential is greater than 1.

Exponential Decay: the graph is decreasing. decay occurs when the base of the exponential is between 0 and 1.

$$
y=b^{x} \quad \text { 'b' }=1 \rightarrow \text { no growth } \quad 0<\text { 'b' }<1 \rightarrow \text { decay }
$$

$$
f(x)=1^{x} \quad g(x)=(0.9)^{x}
$$

x	$f(x)$
-1	1
0	1
1	1

x	$g(x)$
-1	1.1
0	1
1	0.9

$\mathrm{h}(x)=(0.67)^{x} \quad k(x)=(0.5)^{x}$

x	$h(x)$
-1	1.5
0	1
1	0.67

x	$k(x)$
-1	5
0	1
1	0.2

$g(x)=2^{x}$
$f(x)=\left(\frac{1}{2}\right)^{x}$
the y-axis
\rightarrow Reflection across the y-axis (2) If $(3,2)$ is reflected across the y-axis, where would it be?
\rightarrow Replacing ' x ' with '(-x)' causes a reflection across the y-axis

Negative Exponent Property
$f(x)=2^{x} \quad g(x)=3(2)^{x}$

\mathbf{x}	$\left.2^{(}\right)$	$\mathrm{f}(\mathrm{x})$	$g(x)$
$-\mathbf{- 2}$	2^{-2}	0.25	0.75
-1	2^{-1}	0.5	1.5
0	2^{0}	1	3
1	2^{1}	2	6
$\mathbf{2}$	2^{2}	4	12

Vertically stretched by a factor of 3

Horizontal $\quad y=0$
asymptote: $y=0$

$$
\text { Domain }=? \quad \begin{aligned}
& x=(-\infty, \infty) \\
& \\
& x=(-\infty, \infty)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { range }=? & y=(0, \infty) \\
& y=(0, \infty)
\end{array}
$$

x	$2^{()}$	$f(x)$	$k(x)$
-2	2^{-2}	0.25	4.25
-1	2^{-1}	0.5	4.5
0	2^{0}	1	5
1	2^{1}	2	6
2	2^{2}	4	8

$\begin{array}{ll}\text { Horizontal } & y=0 \\ \text { asymptote: } & y=4\end{array}$
$\begin{array}{ll}\text { Horizontal } & y=0 \\ \text { asymptote: } & y=4\end{array}$

$$
\text { Domain }=? \begin{aligned}
& x=(-\infty, \infty) \\
& \\
& x=(-\infty, \infty)
\end{aligned}
$$

$f(x)=2^{x} \quad \mathrm{k}(x)=2^{x}+4$

Shifted UP by 4

$$
\begin{array}{ll}
\text { range }=? & y=-t(0, \infty) \\
& y=(4, \infty)
\end{array}
$$

y -intercept $=$?
$(0,1)$
$(0,5)$

Transformations of the Exponential Function

$f(x)=2^{x}$ Base-2 Exponential Parent Function

$$
h(x)=3)(2)^{x}+4
$$

Up 4 shift

Transformation Form of the Exponential Function

y-intercept: ($0, a+k$)
$h(0)=3(2)^{0}+4$

$$
h(0)=7
$$ of the exponential)

Summary

1) Start with $g(x)=a b^{x}+k$
2) Find the value of ' k '

$$
k=0
$$

(horizontal asymptote).
$g(x)=a b^{x}+k \rightarrow y=a b^{x}$
3) Substitute the y-intercept
$(0,1) \rightarrow y=a b^{x} \rightarrow 1=a b^{0}$
$\rightarrow \mathrm{a}=1 \rightarrow y=b^{x}$
4) Substitute a "nice" x - y pair from the graph into the equation.

$$
(1,2) \rightarrow y=b^{x} \rightarrow 2=b^{1} \rightarrow \mathrm{~b}=2 \rightarrow y=2^{x}
$$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=3$

$$
k=3 \quad y=a b^{x}+3
$$

3) Substitute the y-intercept
$(0,4) \rightarrow 4=a b^{0}+3$

$$
a=1 \rightarrow y=b^{x}+3
$$

4) Substitute a "nice" x - y pair from

					2			1		

$(1,5) \rightarrow$
$5=b^{1}+3$
$\rightarrow \mathrm{b}=2$

$$
y=2^{x}+3
$$

What is the equation of the graph?

1) Start with

$$
g(x)=a b^{x}+k
$$

2) horizontal asymptote $y=1$

$$
k=1 \quad y=a b^{x}+1
$$

3) y-intercept $(0,4) \quad 4=a b^{0}+1$

$$
a=3 \quad y=3 b^{x}+1
$$

4) "Nice" x-y pair ($-1,7$)

$$
\begin{aligned}
& 7=3 b^{-1}+1 \\
& 6=3 b^{-1}
\end{aligned}
$$

$$
2=b^{-1}
$$

$$
2=\frac{1}{b}
$$

$$
b=\frac{1}{2}
$$

$$
y=3\left(\frac{1}{2}\right)^{x}+1
$$

Initial Value: (of the exponential) is the vertical stretch factor (for problems with no up/down shifts)

If in input is time ("stopwatch time") the initial value occurs when $t=0$.

$$
\begin{aligned}
& f(t)=3(2)^{t} \quad \text { Domain: } \mathrm{x}=[0, \infty) \\
& f(0)=3(2)^{0}=?
\end{aligned}
$$

Initial Value: (of the exponential) is the vertical stretch factor (for problems with no up/down shifts)
"Initial Value" is a term that is applicable to modeling of real world situations.

Population $\quad P(t)=500(1.03)^{t}$
Money in a bank account $\quad A(t)=\$ 2500(1.032)^{t}$
Concentration of salt when adding fresh water to salt water

$$
C(t)=0.5 \mathrm{gm} / \text { liter }(0.73)^{t}
$$

Decay of radioactive Carbon 14

$$
A(t)=10 \mathrm{gm}(0.999879)^{t}
$$

