Math-3A Lesson 7-3

Radicals and Rational Exponents
$\sqrt{3}$ What number is equivalent to the square root of 3 ?
$x=\sqrt{3}$ Square both sides of the equation
$(x)^{2}=(\sqrt{3})^{2} \quad x^{2}=3$
$x=\sqrt{3}$ is an equivalent statement to $x^{2}=3$

$$
\begin{array}{rlrl}
\sqrt{3} & \approx 1.732 & & \text { There is no equivalent number } \\
& \approx 1.7321 & \text { The decimal, is just an approximation. } \\
& \approx 1.73205 & \\
& \approx 1.732051 & \\
& \approx 1.7320508 \ldots
\end{array}
$$

$$
\begin{array}{ll}
x=\sqrt[3]{4} & \text { The "3rd root of 4" means: } \\
x^{3}=4 & \text { "what number cubed equa }
\end{array}
$$

Adding and subtracting radicals

Can these two terms be combined using addition? $3 x+2 x$ Write $3 x$ as repeated addition $x+x+x$ Write 2 x as repeated addition $x+x$

$$
3 x+2 x \rightarrow x+x+x+x+x \rightarrow 5 x
$$

When multiplication is written as repeated addition, "like terms" look exactly alike.
$3 \sqrt{x}+2 \sqrt{x} \rightarrow \sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x} \rightarrow 5 \sqrt{x}$
$3 \sqrt{6}+2 \sqrt{6} \rightarrow \sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6} \rightarrow 5 \sqrt{6}$

Define "like powers" "Same base, same exponent".

$$
3 x^{4}+2 x^{4} \rightarrow 5 x^{4}
$$

Define "like radicals" "Same radicand, same index number".

$$
3 \sqrt{6}+2 \sqrt{6} \rightarrow 5 \sqrt{6}
$$

Which of the following are "like radicals" that can be added?

$$
\begin{array}{cl}
\sqrt{2}+\sqrt{3} \text { no } & \sqrt[4]{5}+\sqrt[4]{5} \text { yes } \\
2 \sqrt{3}+3 \sqrt{2} \text { no } & 3 \sqrt[5]{2}+4 \sqrt[5]{2} \text { yes } \\
\sqrt[4]{2}+\sqrt[3]{2} \text { no } & 6 \sqrt[3]{4}+6 \sqrt[4]{4} \text { yes }
\end{array}
$$

$\sqrt{3}+\sqrt{2} \rightarrow \sqrt{3+2}=\sqrt{5} \quad$ Are they equivalent?
If this is a property of radicals, it must work for every combination of numbers.
$\sqrt{4}+\sqrt{9} \rightarrow \sqrt{13}$
$\sqrt{4}+\sqrt{9} \rightarrow 2+3 \rightarrow 5 \neq \sqrt{13}$
$\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
This is NOT a property of radicals. NEVER DO THIS!!!!

$$
\begin{array}{lr}
\sqrt{3} * \sqrt{2} & \sqrt{3} \approx 1.7321 \ldots \sqrt{2} \approx 1.4142 \ldots \\
\sqrt{3 * 2} \rightarrow \sqrt{6} & \sqrt{3} * \sqrt{2} \approx 2.4495 \\
\text { Will this work? } & \sqrt{6} \approx 2.4495
\end{array}
$$

Product of Radicals Property

$$
\sqrt{a} * \sqrt{b} \rightarrow \sqrt{a * b} \quad \sqrt{5} * \sqrt{2}=\sqrt{10}
$$

$\sqrt{4} * \sqrt{9} \rightarrow \sqrt{4 * 9} \quad$ Are these equivalent?

$$
\begin{aligned}
2 * 3 & \rightarrow \sqrt{36} \quad \sqrt{a} * \sqrt{b}=\sqrt{a b} \\
2 * 3 & \rightarrow 6 \\
6 & =6
\end{aligned}
$$

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify the following:

$$
\begin{array}{ccc}
3 \sqrt{8} * 5 \sqrt{2} & 2 \sqrt{3} * 3 \sqrt{5} & \rightarrow 6 \sqrt{15} \\
3 * \sqrt{8} * 5 * \sqrt{2} & 7 \sqrt{6} * 2 \sqrt{5} & \rightarrow 14 \sqrt{30} \\
3 * 5 * \sqrt{8} * \sqrt{2} & \sqrt{5}+3 \sqrt{5} & \rightarrow 4 \sqrt{5} \\
15 * \sqrt{8} * \sqrt{2} & & \rightarrow 9 \sqrt{6} \\
15 * \sqrt{16} & 7 \sqrt{6}+2 \sqrt{6} & \rightarrow 60 \\
15 * 4=60 & &
\end{array}
$$

Simplify radicals: use the Product of Radicals Property to factor ("break apart") the radical into a "perfect square" times a number. $\quad \sqrt{a} * \sqrt{b}=\sqrt{a b}$

$$
\sqrt{18} \rightarrow \sqrt{9} * \sqrt{2} \rightarrow 3 * \sqrt{2} \rightarrow 3 \sqrt{2}
$$

Simplify $\sqrt{24} \rightarrow \sqrt{4} * \sqrt{6} \rightarrow 2 \sqrt{6}$

$$
\begin{aligned}
3 \sqrt{32 x^{2}} & \rightarrow 3 * \sqrt{16} * \sqrt{x^{2}}+\sqrt{2} \rightarrow 3 * 4 * x * \sqrt{2} \rightarrow 12 x \sqrt{2} \\
\sqrt[3]{x^{4}} & \rightarrow \sqrt[3]{x^{3}} * \sqrt[3]{x} \rightarrow x \sqrt[3]{x}
\end{aligned}
$$

$$
\sqrt[4]{3 x^{5} y} \rightarrow \sqrt[4]{x^{4}} * \sqrt[4]{3 x y} \quad \rightarrow x \sqrt[4]{3 x y}
$$

Can we add "unlike" radicals?

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify $7 \sqrt{6}+2 \sqrt{24} \rightarrow 7 \sqrt{6}+(2 * \sqrt{4} * \sqrt{6})$

$$
\begin{aligned}
& \rightarrow 7 \sqrt{6}+(2 * 2 * \sqrt{6}) \\
& \rightarrow 7 \sqrt{6}+4 \sqrt{6} \\
& \rightarrow 11 \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
-3 \sqrt{32}+2 \sqrt{8} \rightarrow & (-3 * \sqrt{16} * \sqrt{2})+(2 * \sqrt{4} * \sqrt{2}) \\
& \rightarrow(-3 * 4 * \sqrt{2})+(2 * 2 * \sqrt{2}) \\
& \rightarrow-12 \sqrt{2}+4 \sqrt{2} \\
& \rightarrow-8 \sqrt{2}
\end{aligned}
$$

Another way to Simplify Radicals Factor, factor, factor!!!
$\sqrt{54} \rightarrow \sqrt[2]{54} \rightarrow \sqrt[2]{2 * 27} \rightarrow \sqrt[2]{2 * 3 * 9} \rightarrow \sqrt[2]{2 * 3 * 3 * 3}$
What is the factor that is used (Index number) ' 2 ' times under the radical?

Bring the out factor that is used 2 times.

$$
\rightarrow 3 \sqrt[2]{2 * 3} \rightarrow 3 \sqrt{6}
$$

Using Properties of Exponents to reduce the writing:

$$
\begin{aligned}
\sqrt[4]{32 x^{6}} & \rightarrow \sqrt[4]{32 * x^{4} * x^{2}} \\
& \rightarrow x \sqrt[4]{32 * x^{2}} \\
& \rightarrow x \sqrt[4]{2^{4} * 2^{1} * x^{2}} \\
& \rightarrow 2 x \sqrt[4]{2 x^{2}}
\end{aligned}
$$

Rationalizing the denominator: using mathematical properties to change an irrational number (or imaginary number) in the denominator into a rational number.

We take advantage of the idea:

$$
\begin{aligned}
& \sqrt{2} * \sqrt{2}=\sqrt{2 * 2}=\sqrt{4}=2 \\
& \sqrt{3} * \sqrt{3}=\sqrt{3 * 3}=\sqrt{9}=3
\end{aligned}
$$

Property of Multiplication
multiplying by ' 1 ' doesn't change the number.

$$
\begin{aligned}
& \frac{2}{\sqrt{6}} * \frac{\sqrt{6}}{\sqrt{6}} \rightarrow \frac{2 \sqrt{6}}{6} \rightarrow \frac{2 * \sqrt{6}}{8 * 3} \rightarrow \frac{\sqrt{6}}{3} \\
& \frac{25}{\sqrt{15}} * \frac{\sqrt{15}}{\sqrt{15}} \rightarrow \frac{25 \sqrt{15}}{15} \rightarrow \frac{5 * 5 * * \sqrt{15}}{5 * 3} \rightarrow \frac{5 \sqrt{15}}{3} \\
& \frac{14}{3 \sqrt{21}} * \frac{\sqrt{21}}{\sqrt{21}} \rightarrow \frac{14 \sqrt{21}}{3 * 21} \rightarrow \frac{2 * 2 * * \sqrt{21}}{3 * \chi * 3} \rightarrow \frac{2 \sqrt{21}}{9}
\end{aligned}
$$

Radicals CAN be written as Powers

Coefficient \longrightarrow Coefficient
Radicand \longrightarrow Base
Index \longrightarrow Denominator of the Exponent
The index number is the denominator of the exponent.

Are radicals related to powers?

$$
3^{1 / 2}=\sqrt[2]{3}
$$

$$
5^{1 / 3}=\sqrt[3]{5}
$$

$$
\begin{aligned}
& 3 \sqrt[2]{y}=3 y^{1 / 2} \\
& 5 \sqrt[3]{7}=5(7)^{1 / 3}
\end{aligned}
$$

Multiplication (by a coefficient) is "repeated
$\sqrt[2]{x}=x^{1 / 2}$ addition." This explains why coefficients of

$$
\sqrt[3]{7}=7^{1 / 3}
$$ radicals become coefficients of powers.

$$
\sqrt{y}=y^{1 / 2}
$$

None of these have coefficients!

$$
\begin{array}{r}
3 \sqrt[2]{y}=\sqrt{y}+\sqrt{y}+\sqrt{y} \\
3 y^{1 / 2}=y^{1 / 2}+y^{1 / 2}+y^{1 / 2}
\end{array}
$$

What happens if there is a product under the radical?

$$
\begin{aligned}
\sqrt[2]{x y} & =(x y)^{1 / 2} \\
5 \sqrt[3]{3 x} & =5(3 x)^{1 / 3} \\
2 \sqrt[4]{21 m n} & =2(21 m n)^{1 / 4}
\end{aligned}
$$

How did we show that the index number applied to the entire product (radicand) when re-written in "power form"?

Power of a product \rightarrow product inside parentheses with an exponent.

$$
\begin{aligned}
& \sqrt[5]{x^{2} y}=\left(x^{2} y\right)^{1 / 5}=x^{2 / 5} y^{1 / 5} \\
& 6 \sqrt[3]{3 m^{2}}=6\left(3 m^{2}\right)^{1 / 3}=6\left(3^{1 / 3}\right) m^{2 / 3}
\end{aligned}
$$

"Exponential Form" that has both a numerator and denominator
The exponent can be written as a rational number.

$$
x
$$

Numerator:
Exponent of the base.

$$
\sqrt[3]{2^{2}}
$$

Radical Form

Denominator:
Root of the base.

$$
=2^{2 / 3}
$$

Exponential Form

Re-write in power form.

$$
\sqrt[2]{3 m} \rightarrow(3 m)^{1 / 2}
$$

Rewrite in "radical form"
$m^{1 / 5} \rightarrow \sqrt[5]{m}$

$$
4 \sqrt[3]{5 y} \rightarrow 4(5 y)^{1 / 3}
$$

$3 n m^{1 / 4} \rightarrow 3 n \sqrt[4]{m}$

$$
\sqrt[5]{x^{3} y^{2}} \rightarrow\left(x^{3} y^{2}\right)^{1 / 5} \rightarrow x^{3 / 5} y^{2 / 5}
$$

$2\left(18 n^{2}\right)^{1 / 6} \rightarrow 2 \sqrt[6]{18 n^{2}}$

Multiply Powers Property

$$
y^{2} * y^{3}=?=y^{2+3}=y^{5}
$$

When multiplying "same based powers" add the exponents.

$$
x^{\frac{2}{3}} * x^{\frac{3}{4}} \quad \rightarrow x^{\frac{2}{3}+\frac{3}{4}} \quad \rightarrow x^{\frac{17}{12}}
$$

Yes, you must be able to add fractions
Exponent of a Power Property

$$
\left(y^{2}\right)^{3}=?=y^{2 * 3}=y^{6}
$$

When multiplying "same based powers" add the exponents.

$$
\left(y^{1 / 2}\right)^{2 / 3}=y^{\frac{1}{2} * \frac{2}{3}}=y^{\frac{1}{3}}
$$

