Math-3A Lesson 6-4

Inverse Functions

Exchanging the x and y values

1. Plot the following points using stars
2. Fill in another table with the same values, but exchange the x and y values

$$
\begin{array}{ll}
x & y \\
1 & 2 \\
2 & 0
\end{array}
$$

3. Graph the new points using little circles.
4. What do you notice?

Vocabulary
Inverse Relation: A relation that interchanges the input and output values of the original relation.

Relation: $(-2,5),(5,6),(-2,6),(7,6)$

Inverse Relation: $(5,-2),(6,5),(6,-2),(6,7)$

How to find the inverse relation \quad| $x=1 / 2 y+2$ |
| :---: |
| |
| Relation: $y=1 / 2 x+2$ |$\quad-2{ }^{-2} y$

1. Exchange ' x ' and ' y ' in the original relation.
2. Solve for ' y ' (get ' y ' all by itself).

$$
\begin{array}{c|l}
x-2 & 1 / 2 y \\
* 2 & * 2 \\
\hline 2(x-2) & =\frac{2}{1} * \frac{1}{2} y
\end{array}
$$

$$
\begin{aligned}
& 2 x-4=y \\
& y=2 x-4
\end{aligned}
$$

$$
y=1 / 2 x+2
$$

$$
y=2 x-4
$$ $y=x$.

Find the inverse of: $f(x)=4 x+2 \quad$ Exchange ' x ' and ' y '

$$
x=4 y+2 \quad \text { This IS the inverse function }
$$ (written as: "x as a function of y ")

Rewrite it so that it is written as: " y as a function of x ") subtract '2' (left and right)

Function Notation: "the inverse of $f(x)$ "

$$
f(x) \quad f^{-1}(x)
$$

$f^{-1}(x)$ means "the inverse of $f(x)$ "
Do not confuse this notation with the negative exponent property:

$$
x^{-1}=\frac{1}{x^{1}}
$$

Negative exponent on a number or an expression means "flip the number" (the reciprocal of the number)"

The inverse of a function means "exchange ' x ' and ' y ' (then solve for ' y ')."
$\mathrm{f}(\mathrm{x})=\mathrm{x}-2 \quad f^{-1}(x)=? \quad$ Exchange ' x ' and ' y '
There's no " y " !!! Remember: $y=f(x) \rightarrow \quad y=x-2$
$x=y-2 \quad$ This IS the inverse function
(written as: "x as a function of y ")
Rewrite it so that it is written as: "y as a function of x ")
Add '2' (left and right)
$x+2=y \quad$ Rearrange into "slope intercept form"
$y=x+2 \quad$ This is the inverse of: $y=x-2$
Graph both equations on your calculator.
Also graph the line $\mathrm{y}=\mathrm{x}$.
Push "zoom" option 5 (zoom square)
Are the two equations inverses of each other?

If you have the graph of a relation; how can you tell if the relation is a function?

Vertical Line Test if the line intersects the graph more than once, it is NOT a function.

$$
\begin{aligned}
& \begin{array}{l}
f(x)=x^{2} \\
f^{-1}(x)=?
\end{array} \\
& x=y^{2} \longrightarrow y=? ? \quad y= \pm \sqrt{x} \\
& x=(? ?)^{2} \\
& x=(\sqrt{x})^{2} \quad x=(-\sqrt{x})^{2}
\end{aligned}
$$

Is the inverse of $f(x)$ a function?

If you have a graph; how can you tell if the inverse of the graphed function is also a function?
$f(x)=x^{2}$

Horizontal Line Test: if the line intersects the graph more than once, then the
Inverse of the function is NOT a function.

$$
f(x)=\sqrt{x-2} \quad f^{-1}(x)=?
$$

Exchange ' x ' and ' y ' in the original relation.

$$
x=\sqrt{y-2}
$$

This IS the inverse function (written as: "x as a function of y ")
Rewrite it so that it is written as: " y as a function of x ")
$(x)^{2}=(\sqrt{y-2})^{2} \quad x^{2}=y-2 \quad y=x^{2}+2$

Why do we only graph the right side of the parabola?
Since the $x-y$ pairs of SQRT are all positive, then the $x-y$ pairs of the inverse of the SQRT (square function) will be positive.

Find the inverse of: $\quad f(x)=x^{3}-3$ Exchange ' x ' and ' y '
$x=y^{3}-3 \quad$ This $\underline{I S}$ the inverse function, but it is written in the form " x as a function of y "
Rewrite it so that it is written as: " y as a function of x ")

$$
x+3=y^{3} \quad \text { Add ' } 3 \text { ' (left and right) }
$$

$$
\sqrt[3]{x+3}=\sqrt[3]{y^{3}} \quad \text { cubed root both sides }
$$

$$
\sqrt[3]{x+3}=y
$$

Simplify
$f^{-1}(x)=\sqrt[3]{x+3}$
Is the inverse of: $f(x)=x^{3}-3$

Function A : heating by 10 degrees
What is the inverse of this function?
"Cooling something down by 10 degrees"

Function B: cooling by 10 degrees
The temperature of a bowl of soup is 100 degrees.
The temperature of a bowl of soup is 100 degrees. Apply function A then function B (in sequence) to the bowl of soup. What is the final temperature of the soup?

Temperature $=100+10-10$

Composition of inverse functions
Function A and Function B are inverses of each other.

Function A: "does something" to the input.

Function B: "undoes whatever function A did to the input.
27
Function A "does something" to input value 2

Function B "undoes (whatever A did) to the input value 2

What is the output of function B?

Composition of inverse functions.

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& f^{-1}(x)=x^{2} \\
& 27 \\
& g()=()^{2} \\
& g(2)=(2)^{2} \\
& \downarrow \\
& 1 \\
& \begin{array}{c}
f()=\sqrt{(~)} \\
\downarrow \\
f(4)=\sqrt{(4)} \\
2
\end{array}
\end{aligned}
$$

What just happened?
"A Function "un-does" whatever its inverse "did to the input value".

$$
\begin{gathered}
f(x)=(x+1)^{2 / 3} \quad f^{-1}(x)=? \\
x=(y+1)^{2 / 3} \\
x^{3 / 2}=\left((y+1)^{2 / 3}\right)^{3 / 2} \\
x^{3 / 2}=y+1 \\
y=x^{3 / 2}-1
\end{gathered}
$$

What function would "undo" a:

1. $f(x)=\left\{x^{4}, x=[0, \infty)\right\} \quad f^{-1}(x)=\sqrt[4]{x}$
2. $g(x)=x^{2 / 3}$

$$
g^{-1}(x)=x^{3 / 2}
$$

3. $h(x)=x^{4 / 5}$

$$
h^{-1}(x)=? \quad=x^{5 / 4}
$$

4. $k(x)=x^{5}$

$$
k^{-1}(x)=?=x^{1 / 5}=\sqrt[5]{x}
$$

Identify the pairs that cannot be inverses. Why can't they be inverses?

$$
\text { 1. } y=x^{4}-3 \quad y=\sqrt[4]{x+3}
$$

2.

$$
y=(x-5)^{2 / 3}
$$

$$
y=x^{3 / 2}+5
$$

3.

$$
y=(x+6)^{4 / 5}
$$

$$
y=x^{5 / 4}+5
$$

$$
\text { 4. } y=(x+2)^{5}-3
$$

$$
y=(x+3)^{1 / 4}-2
$$

Stop here

Your Turn:

Are $f(x)$ and $g(x)$ inverses of each other ?

$$
g(x)=\frac{x+1}{4} \quad f(x)=4 x-1
$$

Are $f(x)$ and $g(x)$ inverses of each other?

$$
g(x)=\frac{(x-1)^{2}}{5} \quad f(x)=1+\sqrt{5 x}
$$

$$
\begin{array}{ll}
f(x)=\frac{2}{x-3}+4 & f^{-1}(x)=? \\
x=\frac{2}{y-3}+4 & y-3=\frac{2}{(x-4)} \\
x-4=\frac{2}{y-3} & y=\frac{2}{(x-4)}+3 \\
(y-3)(x-4)=2 &
\end{array}
$$

$$
\begin{array}{cc}
f(x)=\frac{3 x}{x+1}+6 & f^{-1}(x)=? \\
x=\frac{3 y}{y+1}+6 & x y-6 y+x-6=3 y \\
x-6=\frac{3 y}{y+1} & x y-6 y-3 y=-x+6 \\
x y-9 y=-x+6 \\
(y+1)(x-6)=3 y & y=\frac{-x+6}{(x-9)}
\end{array}
$$

Your Turn: $\quad g(x)=5 x^{2}-1 \quad g^{-1}(x)=$?

$$
\begin{gathered}
x=5 y^{2}-1 \\
x+1=5 y^{2} \\
\frac{x+1}{5}=y^{2}
\end{gathered}
$$

$$
y=\frac{\sqrt[2]{x+1}}{\sqrt[2]{5}}
$$

$$
y=\frac{\sqrt[2]{x+1}}{\sqrt[2]{5}} * \frac{\sqrt[2]{5}}{\sqrt[2]{5}}
$$

$$
y=\sqrt[2]{\frac{x+1}{5}}
$$

$$
y=\frac{\sqrt[2]{5(x+1)}}{5}
$$

$$
\begin{array}{ll}
g(x)=3+\sqrt[3]{2 x+1} & g^{-1}(x)=? \\
x=3+\sqrt[3]{2 y+1} & y=\frac{(x-3)^{3}}{2} \\
x-3=\sqrt[3]{2 y+1} & \\
(x-3)^{3}=2 y+1 & \\
(x-3)^{3}-1=2 y &
\end{array}
$$

We use compositions of inverse functions to solve equations.

$$
\begin{array}{cc}
(x-3)^{2}+4=40 & \begin{array}{l}
\text { "Isolate the square, } \\
\text { undo the square". }
\end{array} \\
-4-4 & \begin{array}{l}
\text { "undo the square" }
\end{array} \\
(x-3)^{2}=36 & \begin{array}{l}
\text { undo "sns "inverse } \\
\text { menction" of the }
\end{array} \\
\sqrt[2]{(x-3)^{2}}=\sqrt{36} & \begin{array}{c}
\text { square }
\end{array} \\
x-3= \pm 6 & \begin{array}{l}
x=3+6=9 \\
x=3-6=-3
\end{array}
\end{array}
$$

Solve the following equation

$23=3 x^{3}-1 \quad$ Isolate the power:
$24=3 x^{3}$
$8=x^{3} \quad$ undo the power

$$
\sqrt[3]{8}=\sqrt[3]{x^{3}}
$$

$$
2=x
$$

Your Turn:
Solve $\quad 13=x^{4}-3$

$$
16=x^{4} \quad \pm \sqrt[4]{16}=x \quad x= \pm 2
$$

Solve $\quad \sqrt{2 x+1}=3 \quad(\sqrt{2 x+1})^{2}=3^{2}$

$$
2 x+1=9
$$

$$
2 x=8
$$

$$
x=4
$$

Using an inverse function to solve an equation.
Ticket prices in the NFL can be modeled by:

$$
P=35 t^{0.192} \quad \begin{aligned}
& \text { where ' } t \text { ' is the number of } \\
& \text { years since } 1995 .
\end{aligned}
$$

(price as a function of time since 1995)
During what year was the price of a ticket \$50.85?

$$
P=35 t^{0.192} \quad 50.85=35 t^{0.192}
$$

50.85

$$
\left(\frac{50.85}{35}\right)^{1 / 0.192}=t
$$

$$
t=6
$$

$$
1995+6=2001
$$

