SM3-A Lesson 5-4 (Applications of Rational Functions) → Rates

Evom	nlag
	$\mu \overline{c} \overline{c}$.

Quantity	Unit of Measure
Height	Inches, feet, miles, etc.
Weight	Pounds, ounces, kilograms, grams
Temperature	Degrees F, Degrees C, Degrees K

Sometimes ratios of quantities become new quantities. We call this quantity a "rate"

When you see the word <u>"per"</u> it is a ratio

Quantity	Ratio of:	Unit of Measure
Speed	Distance/time	Mile/hr (mile "per" hr) Ft/sec (ft "per" sec)
"unit price"	Cost/weight	\$/lbm (dollar "per" pound)
Fuel efficiency	Distance/volume gas used	Miles/gallon (mph) (miles "per" gallon)

Jose takes 3 hours to clean a house (time rate of cleaning: one house per 3 hours $\rightarrow Rate_{Jose} = \frac{1 \text{ house}}{3 \text{ hours}}$

George takes 4 hours to clean a house (time rate of cleaning: one Job per 4 hours \rightarrow Rate_{George} = $\frac{1 \text{ house}}{4 \text{ hours}}$

How Long for both to clean one house by working together?

Rate George + Rate Jose = Combined Rate (George & Jose) $Rate_G + Rate_J = Rate_{G+J}$

 $\frac{1 \text{ house}}{4 \text{ hrs}} + \frac{1 \text{ house}}{3 \text{ hours}} = \frac{1 \text{ house}}{t \text{ hours}} \qquad \frac{1}{4} + \frac{1}{3} = \frac{1}{t} \qquad \text{Multiply by the common denominator}$ $\frac{12t}{4} + \frac{12t}{3} = \frac{12t}{t} \qquad \text{simplify} \qquad 3t + 4t = 12 \qquad 7t = 12 \qquad t = \frac{12}{7}$

t = 1.7 hrs

James, Adam and Paul can paint a room together in 2 hours. If Adam does the job alone he can paint the room in 5 hours. If Paul works alone, he can paint the room in 6 hours. If James works alone, how long would it take him to paint the room?

Jamie, Pria and Saul can paint a room together in 2 hours. If Pria does the job alone she can paint the room in 5 hours. If Paul works alone, he can paint the room in 6 hours. If Jamie works alone, how long would it take her to paint the room?

 $Rate_{J+P+S} = Rate_J + Rate_P + Rate_S$

 $t = 7.5 \, \text{hrs}$

<u>Tanya and Cam</u> can each wash a car and vacuum its interior in <u>2 hours</u>. <u>Pat needs 3 hours</u> to do this same job by himself. If Pat, Cam and Tanya work together, how long will it take them to clean a car?

 $Rate_{T+C+P} = Rate_T + Rate_C + Rate_P$

t = 0.75 hrs

<u>Mixture Problem</u>: mixtures of various concentrations of solutions, allows, items, etc. <u>30 ml. of a 20% saline (salt/water) solution is mixed with 50 ml. of a 75</u>% saline solution. What is the concentration of the mixture?

% concentration
$$_{pure} = \frac{part}{whole} = \frac{weight_{pure}}{weight_{total}}$$

20% = $0.2 = \frac{x}{30ml}$ 75% = $0.75 = \frac{x}{50ml}$
 $x = 6 \text{ ml (salt)}$ $x = 37.5 \text{ ml (salt)}$

A		В	A & B	
Part <mark>6 ml</mark>		37.5 ml	43.5 ml	
Whole	30 ml	50 ml	80 ml	
%	0.2	0.75	0.544	

$$\%_{\text{pure}} = \frac{43.5}{80} = 0.544 = 54.4\%$$

<u>Mixture Problem</u>: mixtures of various concentrations of solutions, allows, items, etc.

75 ml. of a 30% saline (salt/water) solution is mixed with 65 ml. of a 45% saline solution. What is the concentration of the mixture?

% concentration $_{pure} = \frac{part}{whole} = \frac{weight_{pure}}{weight_{total}}$

A		В	A & B	
Part	22.5 ml	29.25 ml	51.75 ml	
Whole	75 ml	65 ml	140 ml	
%	0.3	0.45	0.3693	

5 gallons of a 20% acid mixture was added to 10 gallons of an unknown mixture. The resulting mixture concentration was 26.7%. What was the concentration of the 10 gallon mixture? 26.7% = 0.267

% concentration_{pure} =
$$\frac{part}{whole} = \frac{Vol_{pure}}{Vol_{mixture}}$$

	A B		A & B	
Part 1 gal		10x gal	1+10x	
Whole	5 gal	10 gal	15 gal	
%	0.2	X	0.267	

 $15*0.267 = \frac{1+10x}{15} *15$

4.005 = 1 + 10x-1 -1

- 3.005 = 10x
 - 0.3005 = x
 - 30.1% = x

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc.

<u>How much of a 40% saline (salt/water) solution must be mixed with 35 ml. of a 25% saline solution to get a solution with 30% concentration?</u>

% concentration
$$_{pure} = \frac{part}{whole} = \frac{weight_{pure}}{weight_{total}}$$

	Α	В	A & B
Part	0.4x ml	8.75 ml	0.4x + 8.75 ml
Whole	x ml	35 ml	x + 35 ml
%	0.4	0.25	0.3

$$0.3 = \frac{0.4x + 8.75}{x + 35}$$

$$0.3x + 10.5 = 0.4x + 8.75$$

$$1.75 = 0.1x$$

$$0.3(x + 35) = 0.4x + 8.75$$

$$17.5 = x$$

<u>Mixture Problem</u>: mixtures of various concentrations of solutions, allows, items, etc. <u>How much of a *pure* (100%) grape juice must be added to 2 quarts of 35% grape juice mixture to yield 65% grape juice mixture?</u>

% concentration
$$_{pure} = \frac{part}{whole} = \frac{weight_{pure}}{weight_{total}}$$

	A	В	A & B
Part	x qt	0.7 qt	x + 0.7 qt
Whole	x qt	2 qt	x + 2 qt
%	1	0.35	0.65

$$0.65 = \frac{x + 0.7}{x + 2}$$

$$0.65x + 1.3 = x + 0.7$$

% concentration_{pure} =
$$\frac{part}{whole} = \frac{Vol_{pure}}{Vol_{mixture}}$$

3 gallons of an unknown mixture concentration was added to 4 gallons of a 15% acid mixture. The resulting mixture concentration was 20.5%. What was the concentration of the 3 gallon mixture?

	A	В	A & B
Part	3x gal	0.6 gal	3x + 0.6 gal
Whole	3 gal	4 gal	7 gal
%	X	0.15	0.205

$$0.205 = \frac{3x + 0.6}{7}$$

$$0.8353 = 3x$$

$$0.2783 = x$$

<u>Metal Alloy</u>: a mixture of different metals. For example "rose gold" is a mixture of copper (reddish color) with gold (yellow color). "Yellow gold" is a mixture of silver and gold. The purity of gold alloy is measured in "carats".

The a pure substance is mixed with a "filler" we call the ratio of the pure substance to the total amount the <u>concentration</u>.

carats	% Gold	part v	veight
24	100	% concentration _{gold} = $\frac{p car v_{gold}}{m h cl c}$ = $\frac{1}{m h cl c}$	
18	75	Whole _{mixture} V	veignittotal
12	50		
6	25		