SM3-A Lesson 5-4 (Applications of Rational Functions) \rightarrow Rates

Examples:

Quantity	Unit of Measure
Height	Inches, feet, miles, etc.
Weight	Pounds, ounces, kilograms, grams
Temperature	Degrees F, Degrees C, Degrees K

Sometimes ratios of quantities become new quantities. We call this quantity a "rate"
When you see the word "per" it is a ratio

Quantity	Ratio of:	Unit of Measure
Speed	Distance/time	Mile/hr (mile "per" hr) Ft/sec (ft "per" sec)
"unit price"	Cost/weight	\$/lbm (dollar "per" pound)
Fuel efficiency	Distance/volume gas used	Miles/gallon (mph) (miles "per" gallon)

Jose takes 3 hours to clean a house
(time rate of cleaning: one house per 3 hours \rightarrow Rate $_{\text {Jose }}=\frac{1 \text { house }}{3 \text { hours }}$
George takes 4 hours to clean a house (time rate of cleaning: one Job per 4 hours $\rightarrow \quad$ Rate $_{\text {George }}=\frac{1 \text { house }}{4 \text { hours }}$

How Long for both to clean one house by working together?

Rate George + Rate Jose = Combined Rate (George \& Jose) Rate $_{G}+$ Rate $_{J}=$ Rate $_{G+J}$

$$
\frac{1 \text { house }}{4 \text { hrs }}+\frac{1 \text { house }}{3 \text { hours }}=\frac{1 \text { house }}{t \text { hours }} \quad \frac{1}{4}+\frac{1}{3}=\frac{1}{t} \quad \text { Multiply by the common denominator }
$$

$$
\frac{12 t}{4}+\frac{12 t}{3}=\frac{12 t}{t} \quad \text { simplify } \quad 3 t+4 t=12 \quad 7 t=12 \quad t=12 / 7
$$

$$
t=1.7 \mathrm{hrs}
$$

James, Adam and Paul can paint a room together in 2 hours. If Adam does the job alone he can paint the room in 5 hours. If Paul works alone, he can paint the room in 6 hours. If James works alone, how long would it take him to paint the room?

$$
\begin{aligned}
& \text { rate }_{\text {Pria, Jamie, Paul }}=\frac{r o o m}{2 \mathrm{hrs}} \\
& \operatorname{rate}_{\text {Pria }}=\frac{\text { room }}{5 \mathrm{hrs}} \\
& \operatorname{rate}_{\text {Paul }}=\frac{\text { room }}{6 \mathrm{hrs}}
\end{aligned}
$$

$$
t=7.5 \mathrm{hrs}
$$

Jamie, Pria and Saul can paint a room together in 2 hours. If Pria does the job alone she can paint the room in 5 hours. If Paul works alone, he can paint the room in 6 hours. If Jamie works alone, how long would it take her to paint the room?

$$
\text { Rate }_{J+P+S}=\text { Rate }_{J}+\text { Rate }_{P}+\text { Rate }_{S}
$$

$$
t=7.5 \mathrm{hrs}
$$

Tanya and Cam can each wash a car and vacuum its interior in 2 hours. Pat needs 3 hours to do this same job by himself. If Pat, Cam and Tanya work together, how long will it take them to clean a car?

$$
\text { Rate }_{T+C+P}=\text { Rate }_{T}+\text { Rate }_{C}+\text { Rate }_{P}
$$

$$
t=0.75 \mathrm{hrs}
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. 30 ml . of a 20% saline (salt/water) solution is mixed with 50 ml . of a 75% saline solution. What is the concentration of the mixture?

$$
\% \text { concentration }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { weight }_{\text {pure }}}{\text { weight }_{\text {total }}}
$$

$$
\begin{array}{cc}
20 \%=0.2=\frac{x}{30 \mathrm{ml}} & 75 \%=0.75=\frac{x}{50 \mathrm{ml}} \\
x=6 \mathrm{ml} \text { (salt) } & x=37.5 \mathrm{ml} \text { (salt) }
\end{array}
$$

	A	B	A \& B
Part	6 ml	37.5 ml	43.5 ml
Whole	30 ml	50 ml	80 ml
$\%$	0.2	0.75	0.544

$$
\%_{\text {pure }}=\frac{43.5}{80}=0.544=54.4 \%
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. 75 ml . of a 30% saline (salt/water) solution is mixed with 65 ml . of a 45% saline solution. What is the concentration of the mixture?
$\%$ concentrat ion $_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { weight }_{\text {pure }}}{\text { weight }_{\text {total }}}$

	A	B	A \& B
Part	22.5 ml	29.25 ml	$\mathbf{5 1 . 7 5 \mathrm { ml }}$
Whole	75 ml	65 ml	140 ml
$\%$	0.3	0.45	0.3693

5 gallons of a 20% acid mixture was added to 10 gallons of an unknown mixture. The resulting mixture concentration was 26.7%. What was the concentration of the 10 gallon mixture?

$$
\% \text { concentration }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\mathrm{Vol}_{\text {pure }}}{\mathrm{Vol}_{\text {mixture }}}
$$

	A	B	A \& B
Part	1 gal	$10 x$ gal	$1+10 x$
Whole	5 gal	10 gal	15 gal
$\%$	0.2	x	0.267

$$
26.7 \%=0.267
$$

$$
15 * 0.267=\frac{1+10 x}{15^{\prime}}
$$

$$
\begin{gathered}
4.005=1+10 x \\
-1 \quad-1 \\
3.005=10 x \\
0.3005=x \\
30.1 \%=x
\end{gathered}
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. How much of a 40% saline (salt/water) solution must be mixed with 35 ml . of a 25% saline solution to get a solution with 30% concentration?

$$
\% \text { concentration }_{\mathrm{pure}}=\frac{\text { part }}{\text { whole }^{\text {weight }_{\mathrm{total}}}}=\frac{\text { eight }_{\mathrm{pure}}}{}
$$

	A	B	$A \& B$
Part	$0.4 \times \mathrm{ml}$	8.75 ml	$0.4 \mathrm{x}+8.75 \mathrm{ml}$
Whole	x ml	35 ml	$\mathrm{x}+35 \mathrm{ml}$
$\%$	0.4	0.25	0.3

$$
\begin{array}{cl}
0.3=\frac{0.4 x+8.75}{x+35} & 0.3 x+10.5=0.4 x+8.75 \\
& 1.75=0.1 x \\
0.3(x+35)=0.4 x+8.75 & 17.5=x
\end{array}
$$

Mixture Problem: mixtures of various concentrations of solutions, allows, items, etc. How much of a pure (100%) grape juice must be added to 2 quarts of 35% grape juice mixture to yield 65\% grape juice mixture?

$$
\% \text { concentration }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\text { weight }_{\text {pure }}}{\text { weight }_{\text {total }}}
$$

	A	B	A \& B
Part	x qt	0.7 qt	$x+0.7 q t$
Whole	x qt	2 qt	$x+2 q t$
$\%$	1	0.35	0.65

$$
\begin{array}{cc}
0.65=\frac{x+0.7}{x+2} & 0.65 x+1.3=x+0.7 \\
0.65(x+2)=x+0.7 & 1.71=x
\end{array}
$$

$$
\% \text { concentration }_{\text {pure }}=\frac{\text { part }}{\text { whole }}=\frac{\mathrm{Vol}_{\text {pure }}}{\mathrm{Vol}_{\text {mixture }}}
$$

3 gallons of an unknown mixture concentration was added to 4 gallons of a 15% acid mixture. The resulting mixture concentration was 20.5%. What was the concentration of the 3 gallon mixture?

	A	B	$A \& B$
Part	$3 x$ gal	0.6 gal	$3 x+0.6$ gal
Whole	3 gal	4 gal	7 gal
$\%$	x	0.15	0.205

$$
0.205=\frac{3 x+0.6}{7}
$$

$$
0.8353=3 x
$$

$$
1.4353=3 x+0.6 \quad 0.2783=x
$$

Metal Alloy: a mixture of different metals. For example "rose gold" is a mixture of copper (reddish color) with gold (yellow color). "Yellow gold" is a mixture of silver and gold. The purity of gold alloy is measured in "carats".
The a pure substance is mixed with a "filler" we call the ratio of the pure substance to the total amount the concentration.

carats	\% Gold
24	100
18	75
12	50
6	25

$$
\% \text { concentration }_{\text {gold }}=\frac{\text { part }_{\text {gold }}}{\text { whole }_{\text {mixture }}}=\frac{\text { weight }_{\text {gold }}}{\text { weight }_{\text {total }}}
$$

