SM3-A HANDOUT 3-8 (Synthetic Division)

Is there an easier way to do this? Yes!

$1^{\text {st }}$ step: Write the polynomial with only its coefficients.
$2^{\text {nd }}$ step: Write the "zero" of the linear factor.
3rd step: Bring down the lead coefficient

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$4^{\text {th }}$ step: Multiply the "zero" by the lead coefficient.
5th step: Write the product under the next term to the right. $6^{\text {th }}$ step: add the second column downward

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$7^{\text {th }}$ step: Multiply the "zero" by the second number 8th step: Write the product under the next term to the right. $9^{\text {th }}$ step: add the next column downward

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$10^{\text {th }}$ step: Multiply the "zero" by the 3rd number
11th step: Write the product under the next term to the right
$12^{\text {th }}$ step: add the next column downward

Is there an easier way to do this? Yes!

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } = x ^ { 2 } - 3 x - 1 8 \\
& 1 \longdiv { 1 } \begin{array} { l l l l }
{ } & { - 4 } & { - 1 5 } & { 1 8 }
\end{array} \\
& \begin{array}{cccc}
& 1 & -3 & -18 \\
\hline 1 & -3 & -18 & 0
\end{array}
\end{aligned}
$$

This last number is the remainder when you divide:

$$
\begin{gathered}
x^{3}-4 x^{2}-15 x+18 \\
\text { by } \\
x-1
\end{gathered}
$$

Because the remainder $=0$, then $(x-1)$ is a factor AND $x=1$ is a zero of the original polynomial!

The Remainder Theorem:

When dividing a polynomial expression by a lower degree polynomial expression,
\rightarrow If the remainder is zero,
\rightarrow then the divisor is a factor of the original polynomial.

Can you follow this?

What are the x -intercepts?

$$
\begin{gathered}
0=(2 x-5)(3 x+7) \\
x=\frac{5}{2}, \frac{-7}{3}
\end{gathered}
$$

Multiply the two binomials (convert to standard form)

$$
0=6 x^{2}+\ldots \ldots \ldots-35
$$

What do you notice about the first and last terms and the zeroes?

$0=(2 x-5)(3 x+7)$

$$
0=60 x^{2}+\ldots-35
$$

The denominators of the solutions are factors of the lead coefficient.

The numerators of the solutions are factors of the constant term.

$$
\text { "root" = "zero" of a polynomial = value of ' } x \text { ' that causes } y=0
$$

The Rational Roots Theorem: the possible rational roots of a polynomial are factors of the constant divided by factors of the lead coefficient.

$$
\begin{aligned}
& 0=(2 x-5)(3 x+7) \\
& 0=6 x^{2}-x-35 \\
& x= \pm 1,5,7,35, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{5}{2}, \frac{7}{2}, \ldots, \frac{35}{3}, \frac{35}{6}
\end{aligned}
$$

Normally, we would try the easy integers first BUT, for this equation, we already know that the solutions are ugly fractions.

We call this synthetic division.

$$
\begin{gathered}
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } \\
1 \longdiv { 1 } \begin{array} { c c c c }
{ } & { - 4 } & { - 1 5 } & { 1 8 } \\
{ } & { 1 } & { - 3 } & { - 1 8 } \\
{ \hline 1 } & { - 3 } & { - 1 8 } & { 0 }
\end{array}
\end{gathered}
$$

Look at the numbers at the bottom. Are these familiar?

$$
x^{3}-4 x^{2}-15 x+18=(x-1)\left(x^{2}-3 x-18\right)
$$

They are the coefficients of the quadratic factor! (wow)

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } \\
& 1 \longdiv { 1 } \begin{array} { c c c c }
{ } & { - 4 } & { - 1 5 } & { 1 8 } \\
{ } & { 1 } & { - 3 } & { - 1 8 } \\
{ \hline 1 } & { - 3 } & { - 1 8 } & { 0 }
\end{array} \\
& x^{3}-4 x^{2}-15 x+18=(x-1)\left(x^{2}-3 x-18\right) \\
& x^{3}-4 x^{2}-15 x+18=(x-1)(x-6)(x+3)
\end{aligned}
$$

Synthetic Division

$$
\begin{aligned}
& x + 1 \longdiv { x ^ { 3 } } \xlongequal [x ^ { 4 } + 3 x ^ { 3 } + 5 x ^ { 2 } + 9 x + 6] { } \\
& - 1 \longdiv { 1 3 \quad 5 \quad 9 \quad 6 } \\
& \begin{array}{ccccc}
& -1 & -2 & -3 & -6 \\
\hline 1 & 2 & 3 & 6 & 0
\end{array} \\
& x^{4}+3 x^{3}+5 x^{2}+9 x+6=(x+1)\left(x^{3}+2 x^{2}+3 x+6\right)
\end{aligned}
$$

$4^{\text {th }}$ degree poly $=\left(1^{\text {st }}\right.$ degree poly) $\left(3^{\text {rd }}\right.$ degree poly $)$
Is the 3 rd degree polynomial a "nice one"?

Synthetic Substitution

$$
f(x)=-x^{4}-5 x^{3}-2 x^{2}+4 x+1
$$

$(x+3) ?$

$$
- 3 \longdiv { - 1 } \begin{array} { l l l l l }
{ - 5 } & { - 2 } & { 4 } & { 1 }
\end{array}
$$

-1

Synthetic Division \& Substitution

$$
\begin{aligned}
& f(x)=-x^{4}-5 x^{3}-2 x^{2}+4 x \\
& -3 \begin{array}{|ccccc}
\hline-1 & -5 & -2 & 4 & 1 \\
& 3 & 6 & -12 & 24 \\
\hline-1 & -2 & 4 & -8 & 25 \\
\hline & \frac{-x^{4}-5 x^{3}-2 x^{2}+4 x+1}{x+3}=
\end{array} .
\end{aligned}
$$

$$
-1 x^{3}-2 x^{2}+4 x-8+\frac{25}{x+3}
$$

$$
\frac{2 x^{3}+8 x^{2}-2 x-8}{x+3}
$$

$$
f(x)=2 x^{3}+8 x^{2}-2 x-8
$$

$$
f(-3)=?
$$

Possible Rational Zeroes

$$
f(x)=\left(1 x^{3}-4 x^{2}-15 x+18\right.
$$

$$
\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18
$$

Factors of the last term divided by the factors of the first term

Coefficients of Remainder quadratic factor

$$
\left(x^{3}-4 x^{2}-15 x+18\right)=(x-1)\left(x^{2}-3 x-18\right)
$$

