Math-3A Lesson 3-2
 Graphing Polynomial Equations

Conclusion: To determine the end behavior (and shape of the graph) we need to identify the (1) degree, and (2) if the function has been reflected across the x -axis t

$$
y=(2 x+8)(3 x+6)(x-1)(x-3)
$$

Lead term: "left * left * left * left": $2 x * 3 x * x * x=6 x^{4}$
$y=6 x^{4}+\cdots \quad$ Positive (lead coefficient), even degree
End behavior: Up on left, up on right.

Zeroes:

$$
x=-4
$$

$$
x=-2
$$

$$
x=1
$$

$$
x=3
$$

We need to fill in the graph (without using a graphing calculator)!

The General Shape of the Graph of a Polynomial

$$
f(x)=(x-2)(x-3)(x+4)
$$

zeroes: $x=2,3$, and -4 .
All are real numbers. All are $\underline{x \text {-intercepts. }}$ positive lead coefficient and an odd degree.

The end behavior is Up on right, down on left

The General Shape of the Graph of a Polynomial

$$
f(x)=x(x+1)(x-1)(x-2)
$$

zeroes: $\mathrm{x}=0,-1$, 1 , and 2 .
All are real numbers. All are x-intercepts. positive lead coefficient and an even degree.

The end behavior is Up on right, up on left?

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

$$
\text { zeroes: } x=-1,-1,-3 \text {, and } 4 \text {. }
$$

All are real numbers.
All are x -intercepts. positive lead coefficient and an even degree.

The end behavior is U_ Up on right, up on left

Why doesn't the "end behavior" line up?

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

It has the following zeroes: $\mathrm{x}=-1,-1$. -3 , and 4 .
The zero with an EVEN "multiplicity will just "kiss" the x-axis. Remember $y=x^{2}$?

Draw the Graph of a Polynomial

$$
f(x)=(x+2 i)(x-2 i)(x-4)^{2}(x+2)
$$

It has the following zeroes: $\mathrm{x}=2 \mathrm{i},-2 \mathrm{i}, 4,4$, and -2
Only 4 and -2 are real numbers.
These are x -intercepts.
positive lead coefficient and an odd degree.
The end behavior is Up on right, down on Ieft
The graph "kisses" at $\mathrm{x}=4$

Summary

Even degree polynomials: up on right, up on left odd degree polynomials: up on right, down on left

Negative coefficient switches the end behavior.

Polynomial degree tells the number of zeroes and the maximum number of x-intercepts.

Constant term is the y-intercept.

What are the x-intercepts?

$$
\begin{gathered}
y=(x+2)(x-2)(x-3) \\
-2+2+3
\end{gathered}
$$

Write the equation in standard form.

$$
\begin{aligned}
& y=\left(x^{2}-4\right)(x-3) \\
& y=x^{2}(x-3)-4(x-3) \\
& y=x^{3}-3 x^{2}-4 x+12
\end{aligned}
$$

$$
y=-2(x-3)(x+3)(x+1)
$$

a) What is the degree of the polynomial?

$3^{\text {rd }}$ degree

b) What is the lead coefficient?
c) What is the end-behavior?
d) What are the x-intercepts?

Up left, down right

$$
3,-3,-1
$$

e) What is standard form of the polynomial?

$$
y=-2 x^{3}-2 x^{2}+18 x+18
$$

f) What is y-intercept? $\quad(0,18)$

$$
y=(x-\sqrt{2})(x+\sqrt{2})(x+6)
$$

a) What is the degree of the polynomial?

$3^{\text {rd }}$ degree

b) What is the lead coefficient?

1

c) What is the end-behavior?

down left, up right

c) What are the x-intercepts?

$$
\sqrt{2},-\sqrt{2},-6
$$

d) What is standard form of the polynomial?

$$
y=x^{3}+6 x^{2}+2 x+12
$$

$$
y=2(x-1)(-2 x+2)(x-3)(x+4)
$$

a) What is the degree of the polynomial? $4^{\text {th }}$ degree
b) What is the lead coefficient? -4
c) What is the end-behavior? Up left, down right
d) What are the x-intercepts? 1 (mult.=2), 3, -4
e) What is standard form of the polynomial?
$y=-4 x^{4}-4 x^{3}-52 x^{2}+100 x+48$
e) What is the constant?

48

How to get the standard form:

$$
y=2(x-1)(x+2)(x-3)(x+4)
$$

	x^{2}	x	-12
x^{2}	x^{4}	x^{3}	$-12 x^{2}$
x	x^{3}	x^{2}	$-12 x$
-2	$-2 x^{2}$	$-2 x$	24

$$
y=x^{4}+2 x^{3}-13 x^{2}-14 x+24
$$

Diagonals have "like" terms

$$
y=5(x+5)(x-6)(x+7)
$$

a) What is the degree of the polynomial?

$3^{\text {rd }}$ degree

b) What is the lead coefficient?

$$
5
$$

c) What is the end-behavior?

down left, up right

c) What are the x-intercepts?

$$
-5,6,-7
$$

d) What is standard form of the polynomial?

$$
y=5 x^{3}+30 x^{2}-50 x-1050
$$

Your turn: What are the x-intercepts?

$$
\begin{aligned}
& y=5(x+5)(x-6)(x+7) \\
& y=(x-\sqrt{2})(x+\sqrt{2})(x+6) \\
& y=(x-3 i)(x+3 i)(x-2)
\end{aligned}
$$

Given the following solutions, write the standard from polynomial.

$$
\begin{gathered}
x=-4,4, \sqrt{2},-\sqrt{2} \\
\downarrow \\
y=(x+4)(x-4)(x-\sqrt{2})(x+\sqrt{2})
\end{gathered}
$$

Multiply out:

$$
\begin{aligned}
& y=\left(x^{2}-16\right)\left(x^{2}-2\right) \\
& y=x^{2}\left(x^{2}-2\right)-16\left(x^{2}-2\right) \\
& y=x^{4}-2 x^{2}-16 x^{2}+32
\end{aligned}
$$

$$
y=x^{4}-18 x^{2}+32
$$

Quadratic form
(comes from 2 pairs of conjugate pairs).

Quadratic "Form" $\quad y=x^{4}+10 x^{2}+9$
Factor the polynomial
$\left(x^{2}-9\right)\left(x^{2}-1\right)=0$

$$
(x+3)(x-3)(x+1)(x-1)=0
$$

x-intercepts $=3,-3,1,-1$

Convert to "intercept form" (by factoring) then find the zeros of the polynomial.

$$
y=x^{4}-5 x^{2}+4
$$

$$
y=x^{4}-8 x^{2}+16
$$

Solve by factoring.
$0=5 x^{2}-10 x+5$

$$
0=2 x^{5}-16 x^{4}+32 x^{3}
$$

$0=4 x^{2}-16 x+16$

