Math-3A
 Lesson 3-1
 Analyzing Polynomial Equations

Polynomial: An equation (or an expression) with same-base powers being added that are raised to a natural number exponent.
Example: $\quad y=8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3$
Not a polynomial $y=x^{0.5}+3 x^{2 / 3}+6 \sqrt{x}$

Lead coefficient: the coefficient of the largest power.

$$
y=-8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3
$$

Degree: the largest exponent of the polynomial.

Standard Form Polynomial A polynomial ordered so that the exponents get smaller from the left-most term to the rightmost term.

$$
y=\underline{8 x^{5}}+5 x^{4}+\underline{9 x^{3}}+x^{2}+\underline{2 x}+\underline{3}
$$

Term: powers (or the constant) separated by either a '+' or ‘-' symbol.
Number of terms: If all terms are present, a $\underline{2}^{\text {nd }}$ degree polynomial as 3 terms in standard form.

$$
y=2 x^{2}-4 x+5
$$

If you include the number zero as a possible coefficient, an " n-th degree polynomial has $n+1$ terms (i.e., a $3^{\text {rd }}$ degree has 4 terms).

$$
y=4 x^{3}+0 x^{2}-4 x+5
$$

Intercept Form Polynomial A polynomial that has been factored into linear factors, from which you can identify the input values that make the output value equal to zero.

Example: $\quad y=6(x+4)(x+3)(x-2 i)(x+2 i)$

Linear factors: the exponent of the power is a ' 1 '.
Why do we call these linear factors?
$y=m x+b$ Is a linear equation so $(x+2)$ is a linear factor

Fundamental Theorem of Algebra: If a polynomial has a degree of "n", then the polynomial has "n" zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$
\begin{aligned}
& y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48 \\
& " 4^{\text {th }} \text { Degree" } \rightarrow 4 \text { zeroes } \quad x=-4,-3,2 i,-2 i
\end{aligned}
$$

Linear Factorization Theorem: If a polynomial has a degree of " n ", then the polynomial can be factored into " n " linear factors.

$$
y=6(x+4)(x+3)(x-2 i)(x+2 i)
$$

Since each linear factor has one zero, these two theorems are almost saying the same thing.

How can you tell if there are zeroes that are multiplicities?
$y=3(x-2)^{3}(x+4)^{2}(x-\sqrt{5})(x+\sqrt{5})(x-3 i)(x+3 i)$

Zeroes:

$(x-2)^{3} \rightarrow(x-2)(x-2)(x-2) \quad \mathrm{x}=2$ (multiplicity 3)
$(x+4)^{2} \rightarrow(x+4)(x+4)$
$\mathrm{x}=4$ (multiplicity 2)
$(x-\sqrt{5})(x+\sqrt{5})(x-3 i)(x+3 i) \quad 4$ single multiplicity
What is the degree of this polynomial?
$\left(3^{\text {rd }}\right.$ degree $){ }^{*}\left(2^{\text {nd }}\right)^{*}\left(1^{\text {st }}\right)\left(1^{\text {st }}\right)\left(1^{\text {st }}\right)\left(1^{\text {st }}\right)=9^{\text {th }}$ degree
Product of powers property of exponents!

Solve by factoring: If the equation has only one variable (' y ' has already been set to zero), solve by factoring means to convert a standard form polynomial into intercept form (by factoring) and then identifying the zeroes of the polynomial.

$$
\begin{aligned}
& 0=6(x+4)(x+3)(x-2 i)(x+2 i) \\
& \quad x=-4 \quad x=-3 \quad x=2 i \quad x=-2 i
\end{aligned}
$$

Find the zeroes: means that the equation has two variables. $1^{\text {st }}$ step: set $\mathrm{y}=0$, then solve by factoring.

$$
y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48
$$

If the polynomial is already in intercept form: "solve by factoring " means just find the zeroes.

$$
\begin{gathered}
0=(x+5)(x-2)(x-\sqrt{3})(x+\sqrt{3}) \\
x=-5 \quad x=2 \quad x=\sqrt{3} \quad x=-\sqrt{3}
\end{gathered}
$$

Max number of x-intercepts?

$$
y=x^{4}-4 x^{2}+1
$$

$$
y=x^{5}-x^{4}-4 x^{2}+1
$$

"End Behavior"

The "end behavior" of a function means:
"on the right end of the graph is the y-value going UP or DOWN?
And
"on the left end of the graph, is the y-value going UP or DOWN?

In English we could say: "up on right, up on left"

As ' x ' gets bigger (right end) ' y ' gets bigger (goes upward)

As ' x ' gets smaller (left end), ' y ' gets bigger (goes upward)

Which of the following transformations affect end behavior? If so, how?

Left or right shift?
Up or down shift?
Vertical stretching?

Reflection across x-axis? yes
\rightarrow Opposite end-behavior as the parent function.

Do you notice a pattern between the degree and the end behavior?

(up right, down left)

(up right, up left)

$$
y=x^{3}
$$

(up right, down left)

Odd degree: (up right, down left) even degree: (up right, up left)
How would end-behavior change if the function has been reflected across the x-axis?

$$
y=x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

Pick a very large input value: $1,000,000=10 \wedge 6$ then compare each term.

Compare the largest two powers.
$\binom{\left(10^{6}\right)^{5}=10^{30}}{\left(10^{6}\right)^{4}=10^{24}}$
$\left(10^{6}\right)^{3}=10^{18}$
$\left(10^{6}\right)^{2}=10^{12}$
$\left(10^{6}=10^{6}\right.$
$1=10^{0}$

$$
10^{30}=10^{24} * 10^{6}
$$

For $x=1,000,000 \rightarrow x^{\wedge} 6$ is 1,000,000 times larger than $x^{\wedge} 5$
\rightarrow At the right and left ends of the graph (where the input value is a gigantic positive or negative number) the largest power in the polynomial has the largest effect on the output value (y-value) so this term dominates the effect on end-behavior.

Polynomial Degree \rightarrow End Behavior?

$$
y=x^{4}-4 x^{2}+1
$$

$$
y=x^{5}-x^{4}-4 x^{2}+1
$$

All even degree polynomials have the same end behavior!
All odd degree polynomials have the same end behavior!

Lead Coefficient \& Degree \rightarrow End Behavior?

$y=x^{5}-x^{4}-4 x^{2}+1$
$y=-x^{5}-x^{4}-4 x^{2}+1$

All odd degree polynomials have the same end behavior!
negative lead coefficient: reflection across the x-axis, all negative-odd polynomials have the same end behavior!
$4^{\text {th }}$ degree polynomial \rightarrow " 4 zeroes"

$$
y=(x-1)(2 x+8)(x-3)(x+2)
$$

Lead term: "left*left*left*left" $=2 x$

$$
y=(x-1)(2 x+8)(x-3)(2 x+2)
$$

Constant term: (y-intercept) "right * right * right * right" $=$? $=48$ y -intercept $=48$
$y=2 x+\ldots$ (other terms) $\ldots+48$

Complex Conjugates Theorem

If $f(x)$ is a polynomial and if $(x+b i)$ is a factor (-bi is a zero) then its complex conjugate, $(x-b i)$ is also a factor (and +bi is a zero) of $f(x)$.

Example: $\quad 0=x^{2}+4 \rightarrow 0=(x-2 i)(x+2 i)$

$$
x=2 i, x=2 i
$$

Example: $0=x^{4}+5 x^{3}+13 x^{2}+45 x+36$

$$
\begin{gathered}
0=(x+4)(x+1)(x-3 i)(x+3 i) \\
x=-4, \quad-1, \quad 3 i, \quad-3 i
\end{gathered}
$$

Irrational Roots Theorem

If $f(x)$ is a polynomial and if $(x-\sqrt{b})$ is a factor of the polynomial $(\rightarrow \sqrt{b}$ is a zero) then its irrational conjugate $(x+\sqrt{b})$ is also a factor of the polynomial ($\rightarrow \sqrt{b}$ is also a zero).

$$
\text { Example: } \begin{aligned}
0=x^{2}-3 \rightarrow 0 & =(x-\sqrt{3})(x+\sqrt{3}) \\
& x=\sqrt{3}, \quad-\sqrt{3}
\end{aligned}
$$

Example: $0=x^{4}-x^{2}-20$

$$
\begin{gathered}
\rightarrow 0=(x+2 i)(x-2 i)(x-\sqrt{5})(x+\sqrt{5}) \\
x=-2 i, \quad 2 i, \quad \sqrt{5}, \quad-\sqrt{5}
\end{gathered}
$$

Does an even degree polynomial necessarily cross the x-axis?

All zeroes can be imaginary for even-degree polynomials.

Does an odd degree polynomial necessarily cross the x-axis?

Since the end-behavior is down left/ up right, it must cross the x-axis so it has at least one real zero.,

Describe the $\quad f(x)=-8 x^{2}+14 x+8$
(1) end behavior Negative, even degree \rightarrow down left/right
(2) number of real zeroes and/or imaginary zeroes

Make a table of the possible zeroes by category

Degree	Real zeroes	Imaginary Zeroes
2	2	0
	1 (mult 2)	0
	0	2

Describe the $\quad f(x)=2 x^{3}-5 x^{2}+14 x+8$ (1) end behavior positive, odd degree \rightarrow down left, up right
(2) number of real zeroes and/or imaginary zeroes

Degree	Real zeroes	Imaginary Zeroes	
3	0	3 Not possible	
Why not?			
	1	2	
	1 mult 2	1	
Why not? ?			
	1 mult 3	0	
	2	$1 \quad$ Not possible	
Why not?			
	1,1 mult 2	0	
	3	0	

Since "multiplicities" are counted separately, it's easier to just count the number of zeroes without specifying them as multiplicities.

Degree	Real zeroes	Imaginary Zeroes	
3	0	3	Not possible
	1	2	
	2	1	Not possible
	3	0	

Describe the
$f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$
(1) end behavior

Positive, even degree Up on left/right
(2) number of real zeroes and/or imaginary zeroes

Degree	Real zeroes	Imaginary Zeroes
4	0	4
	1	3 Not possible
	2	2
	3	$1 \quad$ Not possible
	4	0

