Math-3A

Lesson 2-7

Vertex Form Quadratic Equation
$y=x^{2}-6 x+4$
Can this be factored?

The x-intercepts are "ugly"
What is the vertex form equation?

$$
y=(x-3)^{2}-5
$$

Standard Form Equation

$$
y=x^{2}-6 x+4
$$

Vertex Form Equation

$y=(x-3)^{2}-5$
How could you get the x-intercepts from the vertex form equation?

Set ' y ' to zero. Isolate the square, "undo" the square.

$$
\begin{array}{ll}
0=(x-3)^{2}-5 & \pm \sqrt{5}=x-3 \\
5=(x-3)^{2} & x=3 \pm \sqrt{5}
\end{array}
$$

Find the X-intercepts from the Vertex Form Equations

$$
\begin{aligned}
& \left.y=-2(x-3)^{2}+4 \quad \text { Set } y=0 \quad \text { (y-value of an } x \text {-int. is } 0\right) \\
& 0=4(x-5)^{2}-8 \quad \text { Add } 8 \text { (left/right) } \\
& 8=4(x-5)^{2} \quad \text { Divide by } 4 \text { (left/right) } \\
& 2=(x-5)^{2} \\
& 2=(-)^{2} \quad \text { What number, squared, equals 2? } \\
& 2=(\sqrt{2})^{2} \quad 2=(-\sqrt{2})^{2} \\
& \pm \sqrt{2}=x-5 \quad \text { Add } 5 \text { (left/right) } \\
& x=5 \pm \sqrt{2}
\end{aligned}
$$

Find the X -intercepts from the Vertex Form Equations

$$
y=(x-5)^{2} \quad y=-2(x-3)^{2}+4
$$

$$
y=-(x+2)^{2}+5
$$

What have we learned?

1. The quadratic formula can give us x-intercepts (only if you have the standard form equation).
There are a lot of numbers and calculations. You can easily make a mistake.
2. If you "isolate the square, undo the square" on the vertex form equation, you can also find x-intercepts.

You have to know how to simplify square roots.

$$
\begin{array}{lc}
y=(x-2)^{2}-12 & x=2 \pm \sqrt{4 * 3} \\
0=(x-2)^{2}-12 & x=2 \pm \sqrt{4} \sqrt{3} \\
12=(x-2)^{2} & x=2 \pm 2 \sqrt{3} \\
x=2 \pm \sqrt{12} &
\end{array}
$$

3. You can convert standard form quadratic equations into intercept form quadratic equations by: factoring

$$
y=2 x^{2}+16 x+24 \rightarrow y=2(x+6)(x+2)
$$

4. You can convert intercept form quadratic equations into vertex form quadratic equations by:
a) Finding the x-coordinate of the vertex (half way between x-intercepts) $\quad x=-6,-2 \quad$ Vertex: $(-4, f(-4))$
b) Substituting the x-value into the equation to find the y-coordinate of the vertex. $f(-4)=2(-4+6)(-4+2)$ $d(-4)=2(2)(-2)=-8 \quad$ Vertex: $(-4,-8)$
c) Using the VSF and the vertex to write the vertex form equation.

$$
\text { VSF }=2 \text {, Vertex: }(-4,-8) \quad y=2(x+4)^{2}-8
$$

How can we convert Standard Form Quadratic Equations directly into Vertex form? (without converting to Intercept Form first?) Remember the quadratic formula gave us these x-intercepts.

$$
\begin{aligned}
& y=x^{2}-6 x+4 \\
& x=\frac{-b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=3 \pm \sqrt{5} \\
& \text { The } x \text {-coordinate of } \\
& \text { the vertex is } 3 . \\
& \text { x-coord. of vertex }=\frac{-b}{2 a}
\end{aligned}
$$

What is the vertex form equation?

$$
\begin{array}{lr}
\hline y=2 x^{2}+16 x+24 & \text { x-coord. of vertex }=\frac{-b}{2 a} \\
a=2 \quad \mathrm{~b}=16 & \frac{-b}{2 a}=\frac{-16}{2(2)}=-4 \\
\text { Vertex: }(-4, f(-4)) &
\end{array}
$$

What is the y-coordinate of the vertex?
$f(-4)=2(-4)^{2}+16(-4)+24$
$f(-4)=-8 \quad$ Vertex: $(-4,-8)$
What is the Vertex form equation?
VSF $=2$, vertex $=(-4,-8) \quad y=2(x+4)^{2}-8$

What is the vertex form equation?

Vertex: (3, f(3))

$$
\begin{gathered}
x \text {-coord. of vertex }=\frac{-b}{2 a} \\
\frac{-b}{2 a}=\frac{-(-6)}{2(1)}=3
\end{gathered}
$$

What is the y-coordinate of the vertex?
$f(3)=(3)^{2}-6(3)+13$
$f(3)=4$
Vertex: $(3,4)$
What is the Vertex form equation?
$\operatorname{VSF}=1$, vertex $=(3,5) \quad y=(x-3)^{2}+4$

What is the vertex form equation?

$$
\begin{aligned}
& \quad \begin{array}{l}
y=3 x^{2}+6 x-12 \\
a=3 \quad \mathrm{~b}=-4
\end{array} \\
& \text { Vertex: }(-1, f(-1))
\end{aligned}
$$

What is the y-coordinate of the vertex?

$$
\begin{aligned}
& f(-1)=3(-1)^{2}+6(-1)-12 \\
& f(-1)=-15 \quad \text { Vertex: }(-1,-15)
\end{aligned}
$$

What is the Vertex form equation?
$\mathrm{VSF}=3$, vertex $=(-1,-15) y=3(x+1)^{2}-15$

We converted these standard form equations into vertex form. What are the x -intercepts of the following equations?

$$
y=2 x^{2}+16 x+24 \rightarrow y=2(x+4)^{2}-8
$$

$$
y=x^{2}-6 x+13 \rightarrow y=(x-3)^{2}+4
$$

$$
y=3 x^{2}-6 x-12
$$

$$
y=3(x+1)^{2}-15
$$

Convert the following non-factorable standard form equations into vertex form. Find the x-intercepts.

$$
y=x^{2}-2 x-12
$$

$$
y=x^{2}+20 x+99
$$

$$
y=x^{2}-14 x+50
$$

