SM3-A Lesson 2-5 (Intercept Form Quadratic Equation)

Factor the following quadratic expressions:

$$
\begin{aligned}
x^{2}+11 x+30 & \rightarrow(x+5)(x+6) \\
x^{2}-10 x-24 & \rightarrow(x-12)(x+2) \\
x^{2}-8 x+15 & \rightarrow(x-5)(x-3)
\end{aligned}
$$

Standard Form Quadratic Equation $\quad y=a x^{2}+b x+c$

$$
\begin{array}{ll}
y=x^{2}+11 x+30 & y=(x+5)(x+6) \\
y=x^{2}-10 x-24 & y=(x-12)(x+2) \\
y=x^{2}-8 x+15 & y=(x-5)(x-3)
\end{array}
$$

Intercept Form Quadratic Equation

$$
y=a(x-p)(x-q)
$$

Vocabulary

X-intercept: the x-y pair where the graph crosses the x-axis.
The y-value of an x-intercept always equals Zero

The Zero Product Property: Zero multiplied by any number equals zero.

The Zero Product Property: If two numbers are multiplied together and the product equals zero, then one or both of the factors must equal zero.
$A * B=0 \quad \rightarrow$ either $A=0$ or $B=0$ or both A and B equal zero.

Intercept form Quadratic Equation

$$
y=(x+4)(x-2)
$$

The y-value of an x-intercept always equals Zero

$$
\begin{gathered}
0=(x+4)(x-2) \\
0=A * B
\end{gathered}
$$

Zero Product Property: either $(x+4)=0$ or $(x-2)=0$

$$
x+4=0 \quad x-2=0
$$

$$
x=-4 \quad x=+2
$$

Intercept form Quadratic Equation

$$
y=(x-1)(x-3)
$$

The y-value of an x-intercept always equals Zero

$$
\begin{gathered}
0=(x-1)(x-3) \\
0=A * B
\end{gathered}
$$

Zero Product Property: either $(x-1)=0$ or $(x-3)=0$

$$
x-1=0 \quad x-3=0
$$

$$
x=1 \quad x=3
$$

Standard Form Quadratic Equation is converted to an Intercept Form Quadratic Equation by factoring.

$$
\left.\begin{array}{rlr}
y=x^{2}+10 x+21 & \rightarrow & y=(x+7)(x+3) \\
& & x=-7 \quad x=-3
\end{array}\right)
$$

What are the x-intercepts for each of these equations?

Convert the following Standard Form Quadratic Equations to Intercept Form (by factoring)

$$
\left.\begin{array}{ccc}
y=x^{2}+3 x-10 & \rightarrow & y=(x+5)(x-2) \\
& & x=-5 \quad x=2 \\
y=x^{2}-8 x-20 & \rightarrow & y=(x-10)(x+2) \\
& & x=10 \quad x=-2
\end{array}\right)
$$

What are the x-intercepts for each of these equations?

Intercept Form Quadratic Equation:

Vertical 'x-intercepts are ' p ' and ' q '
Stretch
Factor!
$y=(-1) a(x-p)(x-q)$

If negative: reflected across x-axis.

Opens 'x-intercepts are: down '-2' and '-4’
'x-intercepts are:
' 1 ' and ' 3 '

$$
y=(x-1)(x-3)
$$

Each set of parentheses is called a "factor". Why?

Convert to Intercept Form

$$
y=2 x^{2}+6 x+4 \quad \frac{\text { Always factor out the }}{\text { common factor first. }}
$$

$y=2\left(x^{2}+3 x+2\right) \quad$ Now factor the trinomial.

$$
y=2(x+2)(x+1)
$$

What are the x-intercepts?
Which way (up/down) does the parabola open?

What is the vertical stretch $\quad \mathrm{VSF}=2$ factor?
' -2 ' and '-1'
'x-intercepts are:

Up (not reflected across x-axis)

Convert to Intercept Form

$$
\begin{gathered}
y=3 x^{2}-15 x-18 \\
y=3\left(x^{2}-5 x-6\right) \\
y=3(x-6)(x+1) \\
\begin{array}{c}
\text { Always factor out the } \\
\text { Common factor first. } \\
\text { What are the } x \text {-intercepts? }
\end{array} \quad \begin{array}{c}
\text { Now factor the trinomial. } \\
\hline \text { 'intercepts are: } \\
\text { ' } 6 \text { ' and '-1' }
\end{array}
\end{gathered}
$$

Which way (up/down) does the parabola open?

What is the vertical stretch $\quad \mathrm{VSF}=3$ factor?

\section*{Always factor out the

Always factor out the common factor first.

 common factor first.}Up (not reflected across x-axis)

x-intercepts? ‘-4’ and '-2’

x-intercepts? ' 3 ' and ' 5 '

How can you use the x-intercepts to determine the x-coordinate of the vertex?

The x-coordinate of the vertex is halfway between the x-intercepts.
x-coordinate of the vertex? (-3, __)
x-coordinate of the vertex?
$(4, \ldots)$

' x-intercepts are ' 1 ' and ' 3 '
axis of symmetry?

$$
x=2
$$

x-coordinate of the vertex?
$(2, \ldots)$

x-intercepts?
' x-intercepts are ' -1 ' and ' 3 ' axis of symmetry? $x=1$
x-coordinate of the vertex?
$(1, \ldots)$

How can you use the x-intercepts to determine the x-coordinate of the vertex?

Half-way between two numbers is the average of the two numbers. The axis of symmetry is exactly half-way between the two x -intercepts.

$$
\begin{aligned}
y= & (x+5)(x-1) \\
& X=-5 \quad X=1
\end{aligned} \quad x=\frac{-5+1}{2} \quad=\frac{-4}{2}=-2
$$

What is the x-coordinate of the vertex?

$$
\begin{gathered}
(-2, \ldots) \\
y=(x-6)(x-4) \\
X=6 \quad X=4
\end{gathered}
$$

What is the x-coordinate of the vertex?
$(5, \ldots)$

Half-way between two numbers is the average of the two numbers. The axis of symmetry is exactly half-way between the two x-intercepts.

$$
\begin{aligned}
y= & (x+5)(x-1) \\
& \mathrm{X}=-5 \quad \mathrm{X}=1
\end{aligned} \quad x=\frac{-5+1}{2}=\frac{-4}{2}=-2
$$

What is the x-coordinate of the vertex?

What is the y-coordinate of the vertex?

$$
y=(3)(-3) \quad y=-9
$$

What is the vertex? $\quad(-2,-9)$

What is the vertex?

$$
y=(x+2)(x-4)
$$

$$
X=-2 \quad X=4 \quad x=\frac{-2+4}{2} \quad=\frac{2}{2}=1
$$

$$
y=(3)(-3)
$$

$$
y=-9
$$

$$
(1,-9)
$$

$$
y=(x-6)(x-4)
$$

$$
x=\frac{6+4}{2}
$$

$$
x=6 \quad x=4
$$

$$
=\frac{10}{2}=5
$$

$$
y=(-1)(1) \quad y=-1
$$

$(5,-1)$

Putting it all together!

What are the x-intercepts?
What is the vertex?
What is the graph?

$$
\begin{aligned}
& y=-3 x^{2}+6 x+72 \\
& y=-3\left(x^{2}-2 x-24\right) \\
& y=-3(x-6)(x+4) \quad x=\frac{6-4}{2} \quad=\frac{2}{2} \quad=1 \\
& x=6=-4 \\
& \quad(1, \square) \quad y=75 \\
& y=-3(1-6)(1+4) \\
& (1,75)
\end{aligned}
$$

