Math-3

Lesson 2-1

Factoring
"Expression" (a math "phrase") A name or a symbol for a number

$$
4 \quad x+3 \quad 3 x+4 y-2
$$

Do you see an equal sign in an expression?

"Statement" (a math sentence)
A meaningful assertion that is either true or false.
The most common "statement" is an equation.

$$
x+3=5
$$

Another "statement" could be an inequality.

$$
x+3 \leq 5
$$

Equivalence?

Consult with your neighbor to define "equivalence" as it applies to mathematics.

Fill in the blank:

$$
7-4=5-2
$$

Are there any other possible "equivalences"?

$$
" 3 "=\left\{3, \frac{6}{2}, \frac{3 x}{x},(5-2), \ldots\right\}
$$

Solution: the number (or numbers) that when substituted in for the "letter" ($\mathrm{x}, \mathrm{y}, \mathrm{m}$, etc.) make the statement true.

Equivalent Equations Equations that look different by have the same solutions.
$x=2$ and $2 x=4$ are equivalent equations.
Can an expression have a solution?
Are expressions math statements (that are either true or false)?
"Variable" vs. "Unknown Value"
variable: Aletter or symbol can have many values as the solution.

What is it?
a. Statement
b. Equation
c. expression

1. $3+4-1=6$
2. $x+2 y$
3. $a x+b y>c$

Terms The individual numbers in an expression or an expression or equation that are separated by either a " + " or "-" symbol.

Coefficient The number in front of a variable in an expression or an equation.

$$
\begin{aligned}
& 3 x+4 y-2 \\
& 3 \text { is the } \\
& \text { coefficient of ' } x \text { ' } \quad \begin{array}{l}
3 x \\
\text { coefficient of ' } y \text { ' }
\end{array} .
\end{aligned}
$$

Constant A term in an expression or an equation that does not contain a variable

$$
3 x+4 y-2 \leftarrow-\begin{aligned}
& -2 \text { is a constant (it's "constantly" }-2 \\
& \\
& \text { regardless of the values of ' } x \text { ' or ' } y \text { ') }
\end{aligned}
$$

$\begin{aligned} & 2 x+3=5 \text { Both } 3 \text { and } 5 \\ & \text { are constants }\end{aligned}$

Factor (noun) a number (or expression) that is being multiplied by another number (or expression).

$2 x \quad$ Factors: 2, x.

$2(x+3) \quad$ Factors: $\mathbf{2}_{(1)}^{(\underline{x}+3)}$.
Why is $(x+3)$ a factor? (it looks like a sum)
Because it is an expression that is being multiplied by ' 2 '.

$$
2 *(x+3)
$$

To Factor (verb) to break a number or an expression into two (or more) parts (factors) that are multiplied together.

$$
10 \rightarrow 2 * 5
$$

Common Factor (noun) a number that is a factor of more than one term in an expression.
The expression $\underline{2 x+6}$ has the common factor ' ${ }^{2}$ ' in both terms
We can see this if we factor each term individually:

$$
2 x+6 \rightarrow\left(\underline{2}^{*} x\right)+\left(\underline{2}^{*} 3\right)
$$

"Factoring out" a common Factor from an expression means to rewrite the expression as the common factor multiplied by the expression.

$$
2 x+6 \rightarrow 2(x+3)
$$

"Factoring out the common factor" is actually the reverse of the distributive property!
distributive property: an expression of terms being added that is multiplied by another number or expression.

Factoring out the common factor: the "reverse" of the distributive property.

Identify the factors in each expression.

$$
\begin{aligned}
5 x(3 x+1)(2 x-5) & \rightarrow x^{2},(x-2),(x+3) \\
x^{2}(x-2)(x+3) & \rightarrow 5, x,(3 x+1),(2 x-5)
\end{aligned}
$$

Factors can be an expression made up of terms being added.

Sometimes the common factor is an integer

$$
\begin{array}{cc}
3 x-12 & \\
(3 * x)-(3 * 4) & -4 x^{2}+8 x+12 \\
3(x-4) & (-4 * x * x)+(-4 *-2 * x)+(-4 *-3) \\
& -4\left(x^{2}-2 x-3\right)
\end{array}
$$

Sometimes the common factor is a variable

$$
\begin{array}{cc}
x^{2}+x & x^{3}+x^{2}+x \\
(x * x)+(1 * x) & \left(x * x^{2}\right)+(x * x)+x * 1
\end{array}
$$

" x " is a common factor both terms

$$
x(x+1)
$$

$$
x\left(x^{2}+x+1\right)
$$

Sometimes the common factors

 are both an integer and a variable.$$
\begin{aligned}
& 4 x^{2}-16 x \\
& (4 * x * x)-(4 * 4 * x) \\
& \quad 4 x(x-4)
\end{aligned}
$$

$$
\begin{gathered}
5 x^{3}+15 x^{2}+10 x \\
(5 * x * x * x)+(3 * 5 * x * x)+(2 * 5 * x) \\
5 x\left(x^{2}+3 x+2\right)
\end{gathered}
$$

Factor the following expressions

$$
-50 b+90
$$

$$
-10+20 n^{3}
$$

$$
-60 x^{5}-100 x^{4}-30 x^{2}
$$

$$
-81 r-63 r^{3}-63 r^{4}
$$

$$
-24 x^{4}+40 x^{3}-80 x^{2}+16 x
$$

$$
-40 x^{6}+20 x^{2}+4 x+8
$$

Multiplying Binomials $\quad(x-3)(x+4) \quad x^{2}+x-12$ The "Box Method"

	x	4
x	x^{2}	$4 x$
-3	$-3 x$	-12

Standard Form
Quadratic Expression
$(x+2)(x+6)$

	x	6
x	x^{2}	6 x
2	2 x	12

$x^{2}+8 x+12$

$$
x^{2}-16
$$

Your turn:

$(x+2)(x+3)$ Multiply the two binomials

What method did you use?
Arrows
Distributive Property
(twice)
FOIL
Box method
$(x+2)(x+3)$ multiply
x^{2}
"left times left is the left term"
$(x+2)(x+3) \quad$ "right times right is the right term" $x^{2}+6$
$(x+2)(x+3) \quad$ "inner"
$x^{2}+2 x+6$
$(x+2)(x+3) \quad$ "outer" $x^{2}+2 x+3 x+6=x^{2}+(2+3) x+(2 * 3)$

$$
\begin{array}{r}
(x+2)(x+3) \\
=x^{2}+(2+3) x+(2 * 3)
\end{array}
$$

$$
\begin{aligned}
& (x-6)(x+1) \\
& \left.=x^{2}+(-6+1) x+-6^{*} 1\right) \\
& =x^{2}-5 x-6
\end{aligned}
$$

Left times left is left

$(x+\ldots)(x+\ldots) \quad$ Right times right is right
$(x+\ldots)(x+\ldots)$ Right plus right is middle
$(x+2)(x+3)$
What are the factors of 6 that add up to 5 ?

Try the following:

$$
x^{2}-3 x-4=(x-4)(x+1)
$$

$\left(x+__{_}\right)(x+\ldots) \quad$ Right times right is right $(x+\ldots)(x+\ldots)$ Right plus right is middle
$(-4)(1)=-4$
What are the factors of -4 that add up to -3?

$$
(-4)+(1)=-3
$$

Try the following:

$$
x^{2}+8 x+15=(x+3)(x+5)
$$

$(x+\ldots)(x+\ldots) \quad$ Right times right is right

Right plus right is middle
(3)(5) $=15$

What are the factors of 15 that add up to 8 ?

$$
3+5=8
$$

Try the following:

$$
\begin{aligned}
& x^{2}+10 x+21=(x+3)(x+7) \\
& x^{2}-6 x-16=(x-8)(x+2) \\
& x^{2}-9 x+18=(x-6)(x-3)
\end{aligned}
$$

$2 x^{2}+4 x+2$
 Always factor out the common factor first.

$2\left(x^{2}+2 x+1\right) \quad$ Now factor the trinomial.
$2(x+1)(x+1)$

Your turn:

$$
6 x^{2}+24 x+18
$$

Always factor out the common factor $1^{\text {st }}$.

$6\left(x^{2}+4 x+3\right)$
 Now factor the trinomial.

$6(x+1)(x+3)$

Skills we need

- How to "factor out the common factor" from an expression
- How to factor a trinomial into two binomials
- How to factor some special binomials into two binomials.
$x^{2}-1 \quad$ "the difference of two squares"

$$
x^{2}+0 x-1 \quad \begin{gathered}
\text { Two numbers multiplied }=(-1) \\
\text { and added }=0
\end{gathered}
$$

$$
(-1)(+1)
$$

$$
(x-1)(x+1)
$$

Vocabulary

Conjugate pair (of binomials)

two binomials whose terms are exactly the same except $+/$ - for one pair of terms

$$
\begin{aligned}
& (x-1)(x+1) \\
& (-x+1)(x+1)
\end{aligned}
$$

Which of the following are NOT conjugate pairs?
$(x-4)(x+4) \quad$ Yes, they are.
$(5-x)(5+x) \quad$ Yes, they are.
$(3 x+2)(3 x+2)$ NO, they are NOT.
$(x-\sqrt{5})(x+\sqrt{5})$ Yes, they are.

$$
\begin{aligned}
& x^{2}-2 \\
& x^{2}+0 x-2 \quad \begin{array}{c}
\text { We can call this the "difference of two } \\
\text { squares" }
\end{array} \\
& (-\sqrt{2})(+\sqrt{2}) \\
& (x-\sqrt{2})(x+\sqrt{2})
\end{aligned}
$$

Your turn: Multiply the conjugate pairs.

$$
\left.\begin{array}{ll}
(x-1)(x+1) & =x^{2}-1 \\
(x-\sqrt{2})(x+\sqrt{2}) & =x^{2}-2
\end{array}\right\} \begin{gathered}
\text { Can we use this as a } \\
\text { pattern in order to } \\
\text { factor the difference }
\end{gathered} ~ \begin{gathered}
\text { of two squares? }
\end{gathered}
$$

Your turn: factor the following binomials

$$
\begin{aligned}
x^{2}-6 & =(x-\sqrt{6})(x+\sqrt{6}) \\
x^{2}-9 & =(x-\sqrt{9})(x+\sqrt{9}) \\
& =(x-3)(x+3)
\end{aligned}
$$

Multiply this out: $\quad(x+i)(x-i)$

$$
\begin{gathered}
x^{2}-x i \quad+x i \quad-i^{2} \\
\text { "i" terms "cancel" } \quad i \text { squared }=-1 \\
x^{2} \quad-(-1) \\
x^{2}+1 \\
x^{2}+1
\end{gathered}
$$

Multiply this out: $(x+i \sqrt{2})(x-i \sqrt{2})$

$$
\begin{aligned}
& x(x-i \sqrt{2})+i \sqrt{2}(x-i \sqrt{2}) \\
& \left.x^{2}-x i \sqrt{2}+x i \sqrt{2}-i^{2} \sqrt{2} * \sqrt{2}\right) \\
& \text { "i" terms cancel. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.x^{2}-(-1) \sqrt{2} * \sqrt{2}\right) \\
& \left.x^{2}+\sqrt{2} * \sqrt{2}\right) \\
& \quad x^{2}+2
\end{aligned}
$$

What about the sum of two squares?

$$
x^{2}+1=(x-i)(x+i)
$$

$x^{2}+2=(x-i \sqrt{2})(x+i \sqrt{2})$ Can you see the pattern?
$x^{2}+3=?=(x-i \sqrt{3})(x+i \sqrt{3})$
$x^{2}+4=?=(x-i \sqrt{4})(x+i \sqrt{4})=(x-2 i)(x+2 i)$
$x^{2}+a=(x-i \sqrt{a})(x+i \sqrt{a})$
General form.

$$
x^{2}+7=?=(x-i \sqrt{7})(x+i \sqrt{7})
$$

