$$
\begin{gathered}
\text { Math-3A } \\
\text { Lesson 12-2 }
\end{gathered}
$$

Two Variable Inequalities and

Systems of Inequalities

Draw the graph of the following:

$$
y=x+3
$$

What is the solution to a two-variable equation: $y=x+3$?

The x - y pairs that make the equation true. When graphed the solution to the equation is ALL of the points on the graph.

Single Variable Inequality: The "boundary numbers" separate the solution from the non-solution.

The shaded part of the graph is the solution.

$$
y \geq x+3
$$

What is the solution to a two-variable inequality $y \geq x+3$?

The x-y pairs that make the inequality true. When graphed the solution to the equation is ALL of the points on the graph.

$$
y \geq x+3
$$

The line: $y=x+3$
Is the boundary between the solution and non-solution. It divides the $x-y$ plane into two halves.
The solution to the inequality is all of the $x-y$ pairs in one of the "half planes".

$$
y>x+3
$$

Now it is just ">" not " \geq "
Test two points:
(0, 3)
$(-1,2)$

Do the points on the line make the inequality true?
no

How do we show that on the graph?

$$
y>x+3
$$

Now it is just ">" not " \geq " Test two points: (0, 3)
$(-1,2)$
Do the points on the line make the inequality true?
no

How do we show that on the graph?

Let's write a procedure on how to graph 2variable inequalities.

$$
y>-2 x+3
$$

1. Graph the line.

$$
y=-2 x+3
$$

2. If the inequality is ">" (not " \geq "), the line will be dotted (not shaded).
3. If it is " \geq " the line will be solid (shaded).

Let's write a procedure on how to graph 2variable inequalities.

$$
y>-2 x+3
$$

4. Pick a point and see if it is the solution. If so, shade that side of the line, (otherwise shade the other side).
(0, 0)
$0>-2(0)+3$
no

Shade other side of line from $(0,0)$

Graph the following inequality.

$$
2 x-3 y>6
$$

Why does ">" end up being shaded below the line?

Systems of Inequalities

More than one 2 -variable inequality graphed on the same $x-y$ plot.

$$
\begin{aligned}
& y>x-2 \\
& y<-x+2
\end{aligned}
$$

Two lines that cross divide the plane into 4 regions. Which region contains the points that are the solution to the system of inequalities?

$$
y>x-2 \text { AND } y<-x+2
$$

Solution: the points in the "overlap" region.

Non-linear 2 Variable inequality

$$
y>x^{2}-2
$$

Is the parabola solid or dotted?

Is the solution the region above or below the parabola?

Non-linear 2 Variable inequality

 $y<(x+2)^{3}+2$Is the curve solid or dotted?

Is the solution the region above or below the curve?

Systems of Non-linear 2 Variable inequalities

$$
y<(x+2)^{3}+2
$$

$$
y>x^{2}-2
$$

Which region is the solution?

Solving a System of Inequalities Graphically

 Solve the system $2 x+3 y<4$ and $y>x^{2}$.Graph both inequalities and find their intersection.

Your turn: Graph the system of inequalities:

$$
y \leq-\frac{1}{2}(x-3)^{2}+2 \quad y>-3 x^{3}+6 x^{2}-x-4
$$

